About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 937210, 10 pages
http://dx.doi.org/10.1155/2013/937210
Research Article

An NMR Investigation of Phase Structure and Chain Dynamics in the Polyethylene/Montmorillonite Nanocomposites

Faculty of Material and Chemical Engineering, Ningbo University, Ningbo 315211, China

Received 14 December 2012; Accepted 26 December 2012

Academic Editor: Jun Zhang

Copyright © 2013 Wei Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Materials Science and Engineering R, vol. 28, no. 1-2, pp. 1–63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. B. Morgan and J. W. Gilman, “Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study,” Journal of Applied Polymer Science, vol. 87, no. 8, pp. 1329–1338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Tanniru, Q. Yuan, and R. D. K. Misra, “On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites,” Polymer, vol. 47, no. 6, pp. 2133–2146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zhang and C. A. Wilkie, “Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units,” Polymer, vol. 47, no. 16, pp. 5736–5743, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. H. Zeng, D. Z. Wang, A. B. Yu, and G. Q. Lu, “Synthesis of polymer-montmorillonite nanocomposites by in situ intercalative polymerization,” Nanotechnology, vol. 13, no. 5, pp. 549–553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ray, G. Galgali, A. Lele, and S. Sivaram, “In situ polymerization of ethylene with bis(imino)pyridine iron(II) catalysts supported on clay: the synthesis and characterization of polyethylene-clay nanocomposites,” Journal of Polymer Science A, vol. 43, no. 2, pp. 304–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Kawasumi, “The discovery of polymer-clay hybrids,” Journal of Polymer Science A, vol. 42, no. 4, pp. 819–824, 2004. View at Scopus
  9. B. Blümich, NMR Imaging of Materials, Clarendon Press, Oxford, UK, 2000.
  10. D. E. Demco, G. Rata, R. Fechete, and B. Blümich, “Self-diffusion anisotropy of small penetrant molecules in deformed elastomers,” Macromolecules, vol. 38, no. 13, pp. 5647–5653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Buda, D. E. Demco, M. Bertmer et al., “Domain sizes in heterogeneous polymers by spin diffusion using single-quantum and double-quantum dipolar filters,” Solid State Nuclear Magnetic Resonance, vol. 24, no. 1, pp. 39–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Hedesiu, D. E. Demco, R. Kleppinger et al., “The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene,” Polymer, vol. 48, no. 3, pp. 763–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Li, A. Adams, J. D. Wang, B. Blümich, and Y. R. Yang, “Polyethylene/palygorskite nanocomposites: preparation by in situ polymerization and their characterization,” Polymer, vol. 51, no. 21, pp. 4686–4697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. L. VanderHart, A. Asano, and J. W. Gilman, “Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins,” Chemistry of Materials, vol. 13, no. 10, pp. 3781–3795, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. L. VanderHart, A. Asano, and J. W. Gilman, “Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 2. Measurement of clay dispersion, crystal stratification, and stability of organic modifiers,” Chemistry of Materials, vol. 13, no. 10, pp. 3796–3809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Chen, H. Hurosu, I. Ando, and X. Wu, “Solid-state variable-temperature 1H MAS NMR studies on deuterated polyethylene,” Solid State Nuclear Magnetic Resonance, vol. 7, no. 4, pp. 319–325, 1997. View at Scopus
  17. Y. J. Lee, B. Bingöl, T. Murakhtina et al., “High-resolution solid-state NMR studies of poly(vinyl phosphonic acid) proton-conducting polymer: molecular structure and proton dynamics,” Journal of Physical Chemistry B, vol. 111, no. 33, pp. 9711–9721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. A. Bovey and P. A. Mirau, NMR of Polymers, Academic Press, New York, NY, USA, 1996.
  19. K. Schmidt and H. W. Spiess, Multidimensional Solid-State NMR and Polymers, Academic Press, London, UK, 1994.
  20. L. Y. Wang, P. F. Fang, C. H. Ye, and J. W. Feng, “Solid-state NMR characterizations on phase structures and molecular dynamics of poly(ethylene-co-vinyl acetate),” Journal of Polymer Science B, vol. 44, no. 19, pp. 2864–2879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Hillebrand, A. Schmidt, A. Bolz et al., “Nuclear magnetic resonance detection of two distinctly different chains in the orthorhombic crystalline phase of polyethylenes,” Macromolecules, vol. 31, no. 15, pp. 5010–5021, 1998. View at Scopus
  22. W. Li, B. Jiang, A. Buda et al., “An NMR investigation on the phase structure and molecular mobility of the novel exfoliated polyethylene/palygorskite nanocomposites,” Journal of Polymer Science B, vol. 48, no. 12, pp. 1363–1371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Heinemann, P. Reichert, R. Thomann, and R. Mülhaupt, “Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethene homo- and copolymerization in the presence of layered silicates,” Macromolecular Rapid Communications, vol. 20, no. 8, pp. 423–430, 1999. View at Scopus
  24. H. Sertchook, H. Elimelech, C. Makarov et al., “Composite particles of polyethylene @ silica,” Journal of the American Chemical Society, vol. 129, no. 1, pp. 98–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Bertmer, L. Gasper, D. E. Demco, B. Blümich, and V. M. Litvinov, “Investigation of soft component mobility in thermoplastic elastomers using homo- and heteronuclear dipolar filtered 1H double quantum NMR experiments,” Macromolecular Chemistry and Physics, vol. 205, no. 1, pp. 83–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Bertmer, M. Wang, D. E. Demco, and B. Blümich, “Segmental mobility in short-chain grafted-PDMS by homo- and heteronuclear residual dipolar couplings,” Solid State Nuclear Magnetic Resonance, vol. 30, no. 1, pp. 45–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. J. Zhang, W. X. Lin, G. Yang, and Q. Chen, “Studies on the phase structure of ethylene-vinyl acetate copolymers by solid-state 1H and 13C NMR,” Journal of Polymer Science B, vol. 40, no. 19, pp. 2199–2207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. F. L. Mckenna, A. D. Martino, G. Weickert, and J. B. P. Soares, “Particle growth during the polymerization of olefins on supported catalysts, 1—nascent polymer structures,” Macromolecular Reaction Engineering, vol. 4, no. 1, pp. 40–64, 2010. View at Publisher · View at Google Scholar
  29. D. Jauffrès, O. Lame, G. Vigier, and F. Doré, “How nascent structure of semicrystalline polymer powders enhances bulk mechanical properties,” Macromolecules, vol. 41, no. 24, pp. 9793–9801, 2008. View at Publisher · View at Google Scholar · View at Scopus