About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 954621, 8 pages
http://dx.doi.org/10.1155/2013/954621
Research Article

Magnetic Properties and Microstructure of FeOx/Fe/FePt and FeOx/FePt Films

Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan

Received 9 July 2013; Revised 13 August 2013; Accepted 15 August 2013

Academic Editor: Guangyu Zhao

Copyright © 2013 Jai-Lin Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Weller, A. Moser, L. Folks et al., “High ku materials approach to 100 gbits/in2,” IEEE Transactions on Magnetics, vol. 36, no. 1, pp. 10–15, 2000. View at Scopus
  2. M. H. Hong, K. Hono, and M. Watanabe, “Microsturcture of FePt/Pt magnetic thin films with high perpendicular coercivity,” Journal of Applied Physics, vol. 84, pp. 4403–4409, 1998.
  3. S. N. Piramanayagam, “Perpendicular recording media for hard disk drives,” Journal of Applied Physics, vol. 102, no. 1, Article ID 011301, 22 pages, 2007.
  4. H. J. Richter, “The transition from longitudinal to perpendicular recording,” Journal of Physics D, vol. 40, no. 9, article R149, 2007.
  5. J. P. Liu, C. P. Luo, Y. Liu, and D. J. Sellmyer, “High energy products in rapidly annealed nanoscale Fe/Pt multilayers,” Applied Physics Letters, vol. 72, no. 4, article 483, 3 pages, 1998.
  6. T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, “Formation of octahedral FePt nanoparticles by alternate deposition of FePt and MgO,” Applied Physics Letters, vol. 88, no. 6, Article ID 063117, 3 pages, 2006.
  7. H. H. Li, J. F. Hu, G. Ju, G. M. Chow, and J. S. Chen, “Effects of CrRu-SiOx underlayer with MgO intermediate layer on the microstructure and magnetic properties of FePt-C film,” Journal of Applied Physics, vol. 109, Article ID 07A736, 2009.
  8. E. Yang, H. Ho, D. E. Laughlin, and J. G. Zhu, “Columnar grain growth of FePt(L10) thin films,” Journal of Applied Physics, vol. 111, Article ID 07B720, 2012.
  9. Y. Xu, J. S. Chen, and J. P. Wang, “In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100−xRux underlayer at low substrate temperature,” Applied Physics Letters, vol. 80, no. 18, article 3325, 3 pages, 2002.
  10. Y. C. Wu, L. W. Wang, and C. H. Lai, “Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers,” Applied Physics Letters, vol. 91, no. 7, Article ID 072502, 3 pages, 2007.
  11. M. L. Yan, N. Powers, and D. J. Sellmyer, “Highly oriented nonepitaxially grown L10 FePt films,” Journal of Applied Physics, vol. 93, no. 10, article 8292, 3 pages, 2003. View at Publisher · View at Google Scholar
  12. M. H. Kryder, E. C. Gage, T. W. Mcdaniel et al., “Heat assisted magnetic recording,” Proceedings of the IEEE, vol. 96, no. 11, pp. 1810–1835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. Gilbert, L. W. Wang, T. J. Klemmer, J. U. Thiele, C. H. Lai, and K. Liu, “Tuning magnetic anisotropy in (001) oriented L10 (Fe1−xCux)55Pt45 films,” Applied Physics Letters, vol. 102, no. 13, Article ID 132406, 4 pages, 2013.
  14. J. L. Tsai, H. T. Tzeng, and G. B. Lin, “Magnetization reversal process in Fe/FePt films,” Applied Physics Letters, vol. 96, no. 3, Article ID 032505, 3 pages, 2010. View at Publisher · View at Google Scholar
  15. R. H. Victora and X. Shen, “Composite media for perpendicular magnetic recording,” IEEE Transactions on Magnetics, vol. 41, no. 2, pp. 537–542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Yu. Dobin and H. J. Richter, “Domain wall assisted magnetic recording,” Applied Physics Letters, vol. 89, no. 6, Article ID 062512, 3 pages, 2006. View at Publisher · View at Google Scholar
  17. D. Goll and A. Breitling, “Coercivity of ledge-type L10-FePt/Fe nanocomposites with perpendicular magnetization,” Applied Physics Letters, vol. 94, no. 5, Article ID 052502, 3 pages, 2009. View at Publisher · View at Google Scholar
  18. D. Suess, “Multilayer exchange spring media for magnetic recording,” Applied Physics Letters, vol. 89, no. 11, Article ID 113105, 3 pages, 2006.
  19. J. L. Tsai, H. T. Tzeng, and B. F. Liu, “Magnetic properties and microstructure of graded Fe/FePt films,” Journal of Applied Physics, vol. 107, no. 11, Article ID 113923, 5 pages, 2010.
  20. A. Goncharov, T. Schrefl, G. Hrkac et al., “Recording simulations on graded media for area densities of up to 1 Tbit in 2,” Applied Physics Letters, vol. 91, no. 22, Article ID 222502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. D. Granz and M. H. Kryder, “Granular L10 FePt (0 0 1) thin films for heat assisted magnetic recording,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 3, pp. 287–294, 2012. View at Publisher · View at Google Scholar
  22. D. D. Hawn and B. M. Dekoven, “Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides,” Surface and Interface Analysis, vol. 10, no. 2-3, pp. 63–74, 1987. View at Publisher · View at Google Scholar
  23. D. Brion, “Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau,” Results Applied Surface Science, vol. 5, no. 2, pp. 133–152, 1980. View at Publisher · View at Google Scholar