About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 962026, 8 pages
http://dx.doi.org/10.1155/2013/962026
Research Article

Polymer-Assisted Hydrothermal Synthesis of Hierarchically Arranged Hydroxyapatite Nanoceramic

Department of Nano, Medical and Polymer Materials, College of Engineering, Yeungnam University, Gyeongsan 712749, Republic of Korea

Received 3 May 2013; Accepted 18 June 2013

Academic Editor: Eng San Thian

Copyright © 2013 A. Joseph Nathanael et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. T. Ng, J. Li, M. K. Smith et al., “Growth of epitaxial nanowires at the junctions of nanowalls,” Science, vol. 300, no. 5623, p. 1249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chemical Reviews, vol. 105, no. 4, pp. 1025–1102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Yang, C. Li, X. Zhang et al., “Self-assembled 3D architectures of LuBO3:Eu3+: phase-selective synthesis, growth mechanism, and tunable luminescent properties,” Chemistry: A European Journal, vol. 14, no. 14, pp. 4336–4345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chemical Communications, vol. 10, no. 17, pp. 1964–1965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Zhang, Z. Cheng, P. Yang et al., “Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties,” Langmuir, vol. 25, no. 23, pp. 13591–13598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L.-S. Zhong, J.-S. Hu, H.-P. Liang, A.-M. Cao, W.-G. Song, and L.-J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Advanced Materials, vol. 18, no. 18, pp. 2426–2431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Liu, Q. Wu, and Y. Ding, “Self-assembly and fluorescent modification of hydroxyapatite nanoribbon spherulites,” European Journal of Inorganic Chemistry, no. 20, pp. 4145–4149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. I.-S. Cho, D. W. Kim, S. Lee et al., “Synthesis of Cu2PO4OH hierarchical superstructures with photocatalytic activity in visible light,” Advanced Functional Materials, vol. 18, no. 15, pp. 2154–2162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, vol. 409, no. 6816, pp. 66–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Cai, H. Pan, R. Xu, Q. Hu, N. Li, and R. Tang, “Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: a smart and biocompatible drug release system,” Chemistry of Materials, vol. 19, no. 13, pp. 3081–3083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science, vol. 293, no. 5538, pp. 2227–2231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Ghosh and O. Inganas, “Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors,” Advanced Materials, vol. 11, no. 14, pp. 1214–1218, 1999. View at Publisher · View at Google Scholar
  13. D. R. Rolison and B. Dunn, “Electrically conductive oxide aerogels: new materials in electrochemistry,” Journal of Materials Chemistry, vol. 11, no. 4, pp. 963–980, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem, vol. 1, no. 1, pp. 18–52, 2000. View at Publisher · View at Google Scholar
  15. T. Yonezawa, S. Onoue, and N. Kimizuka, “Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles,” Advanced Materialsno, vol. 13, no. 2, pp. 140–142, 2001.
  16. R. Maoz, E. Frydman, S. R. Cohen, and J. Sagiv, “Constructive nanolithography: site-defined silver self-assembly on nanoelectrochemically patterned monolayer templates,” Advanced Materials, vol. 12, no. 6, pp. 424–429, 2000.
  17. J. Liu, K. Li, H. Wang, M. Zhu, H. Xu, and H. Yan, “Self-assembly of hydroxyapatite nanostructures by microwave irradiation,” Nanotechnology, vol. 16, no. 1, pp. 82–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, and S. I. Stupp, “Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel,” Chemical Reviews, vol. 108, no. 11, pp. 4754–4783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Chen, Y.-J. Zhu, K.-W. Wang, and K.-L. Zhao, “Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures,” CrystEngComm, vol. 13, no. 6, pp. 1858–1863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Nathanael, D. Mangalaraj, P. Chi Chen, and N. Ponpandian, “Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene,” Journal of Nanoparticle Research, vol. 13, no. 5, pp. 1841–1853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. V. Dorozhkin, “Calcium orthophosphates in nature, biology and medicine,” Materials, vol. 2, no. 2, pp. 399–498, 2009.
  22. A. J. Nathanael, S. I. Hong, D. Mangalaraj, N. Ponpandian, and P. C. Chen, “Template free growth of novel hydroxyapatite nanorings: formation mechanism and their enhanced functional properties,” Crystal Growth & Design, vol. 12, no. 7, pp. 3565–3574, 2012.
  23. L. M. Rodríguez-Lorenzo and M. Vallet-Regí, “Controlled crystallization of calcium phosphate apatites,” Chemistry of Materials, vol. 12, no. 8, pp. 2460–2465, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Y. Zhao, Y. J. Zhu, F. Chen, B. Q. Lu, and J. Wu, “Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: surfactant-free microwave hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release,” Crystal Engineering Communications, vol. 15, no. 1, pp. 206–212, 2013.
  25. Z. Li, Y. Xiong, and Y. Xie, “Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route,” Inorganic Chemistry, vol. 42, no. 24, pp. 8105–8109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. C. V. Krishnan, J. Chen, C. Burger, and B. Chu, “Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process,” Journal of Physical Chemistry B, vol. 110, no. 41, pp. 20182–20188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Xiong, X. Wang, L. Lu, X. Yang, and Y. Xu, “Preparation and characterization of Al2O3-TiO2 composite oxide nanocrystals,” Journal of Solid State Chemistry, vol. 141, no. 1, pp. 70–77, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. Y.-H. Tseng, C.-S. Kuo, Y.-Y. Li, and C.-P. Huang, “Polymer-assisted synthesis of hydroxyapatite nanoparticle,” Materials Science and Engineering C, vol. 29, no. 3, pp. 819–822, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zhang, H. Liu, Z. Wang, N. Ming, Z. Li, and A. S. Biris, “Polyvinylpyrrolidone-directed crystallization of ZnO with tunable morphology and bandgap,” Advanced Functional Materials, vol. 17, no. 18, pp. 3897–3905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-H. Jeon, P. Xu, B. Zhang et al., “Polymer-assisted preparation of metal nanoparticles with controlled size and morphology,” Journal of Materials Chemistry, vol. 21, no. 8, pp. 2550–2554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Peng, A.-W. Xu, B. Deng, M. Antonietti, and H. Cölfen, “Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks,” Journal of Physical Chemistry B, vol. 110, no. 7, pp. 2988–2993, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. J. Nathanael, D. Mangalaraj, Y. Masuda, and N. Ponpandian, “Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method,” Materials Chemistry and Physics, vol. 137, no. 3, pp. 967–976, 2013. View at Publisher · View at Google Scholar