About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 171045, 10 pages
http://dx.doi.org/10.1155/2014/171045
Research Article

Behavior of Yb3+ and Er3+ during Heat Treatment in Oxyfluoride Glass Ceramics

1Department of Chemical and Environmental Engineering, University of Toledo, Toledo, OH 43606, USA
2Ceramic Division, Department of Materials, Iran University of Science and Technology, Narmak, Tehran 1684613114, Iran
3Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna, 38206 Tenerife, Spain
4MALTA Consolider Team, La Laguna, 38206 Tenerife, Spain
5Departamento de Física Fundamental II, Tenerife, Spain
6Servicio Integrado de Difracción de Rayos X, Tenerife, Spain
7Nanotechnology Department, Engineering Research Institute, Tehran 1465774111, Iran

Received 7 September 2013; Revised 2 December 2013; Accepted 6 December 2013; Published 2 January 2014

Academic Editor: Mohsen Rahmani

Copyright © 2014 M. H. Imanieh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martína, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Solar Energy Materials and Solar Cells, vol. 116, pp. 171–175, 2013. View at Publisher · View at Google Scholar
  2. A. Tressaud, Synthesis, Characterization & Properties of Nanostructured Solids, vol. 1, John Wiley & Sons, Paris, France, 2010.
  3. L. Rayleigh, “The incidence of light upon a transparent sphere of dimensions comparable with the wave-length,” Proceedings of the Royal Society of London Series A, vol. 84, no. 567, pp. 25–46, 1910.
  4. S. Bhattacharyya, T. Höche, N. Hemono, M. J. Pascual, and P. A. van Aken, “Nano-crystallization in LaF3-Na2O-Al2O3-SiO2 glass,” Journal of Crystal Growth, vol. 311, no. 18, pp. 4350–4355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” Journal of the American Ceramic Society, vol. 82, no. 1, pp. 5–16, 1999. View at Scopus
  6. M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Rare-earth-doped transparent glass ceramics,” Comptes Rendus Chimie, vol. 5, no. 12, pp. 845–854, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Chen, Y. Wang, Y. Yu et al., “Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals,” Materials Chemistry and Physics, vol. 95, no. 2-3, pp. 264–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Bao, Y. Wang, and Z. Hu, “Influence of Er3+ doping on microstructure of oxyfluoride glass-ceramics,” Materials Research Bulletin, vol. 40, no. 10, pp. 1645–1653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Imanieh, et al., “Crystallization of nano calcium fluoride in CaF2-Al2O3-SiO2 system,” Solid State Sciences, vol. 17, pp. 76–82, 2013.
  10. I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Transfer and back transfer processes in Yb3+-Er3+ codoped fluoroindate glasses,” Journal of Applied Physics, vol. 86, no. 2, pp. 935–939, 1999. View at Scopus
  11. D. Chen, Y. Wang, E. Ma, Y. Yu, and F. Liu, “Partition, luminescence and energy transfer of Er3+/Yb3+ ions in oxyfluoride glass ceramic containing CaF2 nano-crystals,” Optical Materials, vol. 29, no. 12, pp. 1693–1699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. H. Imanieh, et al., “Effect of alumina content and heat treatment on microstructure and upconversion emission of Er3+ ions in oxyfluoride glass-ceramics,” Journal of Rare Earths, vol. 30, no. 12, pp. 1228–1234, 2012.
  13. Y. Kishi, S. Tanabe, S. Tochino, and G. Pezzotti, “Fabrication and efficient infrared-to-visible upconversion in transparent glass ceramics of Er-Yb Co-doped CaF2 nano-crystals,” Journal of the American Ceramic Society, vol. 88, no. 12, pp. 3423–3426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Perez-Rodriguez, M. H. Imanieh, L. L. Martín, S. Rios, I. R. Martín, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” Journal of Alloys and Compounds, vol. 576, pp. 363–368, 2013. View at Publisher · View at Google Scholar
  15. D. Chen, Y. Wang, Y. Yu, and E. Ma, “Improvement of Er3+ emissions in oxyfluoride glass ceramic nano-composite by thermal treatment,” Journal of Solid State Chemistry, vol. 179, no. 5, pp. 1445–1452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Materials Chemistry and Physics, vol. 101, no. 2-3, pp. 464–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” Journal of Materials Research, vol. 20, no. 2, pp. 472–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. H. Imanieh, et al., “Improved cooperative emission in ytterbium-doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” Journal of the American Ceramic Society, vol. 95, no. 12, pp. 3827–3833, 2012.
  19. R. Hill, D. Wood, and M. Thomas, “Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine,” Journal of Materials Science, vol. 34, no. 8, pp. 1767–1774, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Lin, G. Ren, M. Chen, Y. Liu, and Q. Yang, “Study of fluorine losses and spectroscopic properties of Er3+ doped oxyfluoride silicate glasses and glass ceramics,” Optical Materials, vol. 31, no. 10, pp. 1439–1442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Hémono, G. Pierre, F. Muñoz, A. de Pablos-Martín, M. J. Pascual, and A. Durán, “Processing of transparent glass-ceramics by nanocrystallisation of LaF3,” Journal of the European Ceramic Society, vol. 29, no. 14, pp. 2915–2920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Russel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses,” Chemistry of Materials, vol. 17, no. 23, pp. 5843–5847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Physical Review B, vol. 1, no. 7, pp. 2961–2969, 1970. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Yan, Y. Chen, and M. Yin, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19 nanophosphors,” Journal of Rare Earths, vol. 29, no. 3, pp. 202–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. del-Castillo, A. C. Yanes, J. Méndez-Ramos, V. K. Tikhomirov, and V. D. Rodríguez, “Structure and up-conversion luminescence in sol-gel derived Er3+-Yb3+ co-doped SiO2:PbF2 nano-glass-ceramics,” Optical Materials, vol. 32, no. 1, pp. 104–107, 2009. View at Publisher · View at Google Scholar · View at Scopus