- About this Journal ·
- Abstracting and Indexing ·
- Advance Access ·
- Aims and Scope ·
- Annual Issues ·
- Article Processing Charges ·
- Articles in Press ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Journal of Nanomaterials

Volume 2014 (2014), Article ID 183954, 6 pages

http://dx.doi.org/10.1155/2014/183954

## Room Temperature Optical Constants and Band Gap Evolution of Phase Pure M_{1}-VO_{2} Thin Films Deposited at Different Oxygen Partial Pressures by Reactive Magnetron Sputtering

^{1}State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics (SIC), Chinese Academy of Sciences (CAS), Dingxi 1295, Changning, Shanghai 200050, China^{2}Graduate University of Chinese Academy of Sciences, Yuquanlu 19, Beijing 100049, China^{3}School of Materials Science and Engineering, Shanghai University, 99 Shangda, Shanghai 200444, China

Received 13 October 2013; Accepted 11 December 2013; Published 2 January 2014

Academic Editor: Yoshitake Masuda

Copyright © 2014 Meng Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

Spectroscopic ellipsometry study was employed for phase pure VO_{2}(M_{1}) thin films grown at different oxygen partial pressures by reactive magnetron sputtering. The optical constants of the VO_{2}(M_{1}) thin films have been determined in a photon energy range between 0.73 and 5.05 eV. The near-infrared extinction coefficient and optical conductivity of VO_{2}(M_{1}) thin films rapidly increase with decreasing O_{2}-Ar ratios. Moreover, two electronic transitions can be uniquely assigned. The energy gaps correlated with absorption edge at varied O_{2}-Ar ratios are almost the same (~2.0 eV); consequently, the absorption edge is not significantly changed. However, the optical band gap corresponding to semiconductor-to-metal phase transition decreases from 0.53 to 0.18 eV with decreasing O_{2}-Ar ratios.

#### 1. Introduction

Vanadium dioxide (VO_{2}), one of the most interesting transition metal oxides, exhibits a reversible first-order semiconductor-to-metal phase transition (SMT) at a critical temperature °C (for bulk single crystal VO_{2}) [1]. VO_{2} has a tetragonal rutile structure with the P4_{2}/mnm space group (R phase) above the phase transition temperature, where the partially filled d_{//} band localized at the Fermi level and the rutile phase is metallic [2]. Below the phase transition temperature, it transforms to a monoclinic structure with the P2_{1}/c space group (M_{1} phase), in which the partially filled d_{//} band splits into an unoccupied part being pushed past the band and a filled part with the d_{//} band dropping below the Fermi level, thus opening up a bandgap of ~0.6 eV between and the filled part of d_{//} band [2]. Dramatic changes in the electrical and optical properties across the SMT make VO_{2} thin films suitable for many applications, such as switching devices, sensors, and smart windows [3–6].

It has been noted that oxygen partial pressure has effects on the structural and resistivity transition behaviors of VO_{2} [7]. Although the optimized oxygen partial pressure to fabricate VO_{2} films on glass and the optical properties of those samples were investigated [8], the optical constants, especially extinction coefficient , which is crucial in understanding band structures, are not involved. Moreover, two energy gaps and are not distinguished as well.

Low visible transparency and unfavorable yellowish colour, which are correlated with absorption edges, limit the application of VO_{2} smart windows. For most practical applications the phase transition temperature needs to be in the vicinity of room temperature (~25°C) and the may be assumed to be correlated with the optical band gap . Consequently, the distinguishment of and plays an important role in improving the performance of VO_{2}.

In this research, we thoroughly investigated the effects of oxygen partial pressures on the optical constants and the electronic transition behaviors of phase pure VO_{2}(M_{1}) thin films deposited on quartz glass by reactive magnetron sputtering. Moreover, two electronic transitions related to absorption edge () and SMT () were distinguished.

#### 2. Experimental Section

VO_{2} thin films with a thickness of ~70 nm were deposited using a reactive rf magnetron sputtering system with a water-cooled vanadium metal target (50 mm in diameter, 99.9% purity). Quartz glasses ( mm) were used as substrates and they were ultrasonically cleaned in acetone and subsequently in ethanol for 15 min, respectively, and then dried with pure nitrogen flow.

After being pumped down to a base pressure of Pa, the deposition chamber was filled with high purity (99.999%) Ar and O_{2} mixture gas. The O_{2}-Ar ratio was fixed as 1.0 : 49.0, 1.5 : 48.5, and 2.0 : 48.0, respectively (the unit is sccm). The total gas pressure was maintained at ~1.0 Pa. An rf power of 200 W was applied to the V target. During deposition, the substrate temperature was kept at 450°C for the better crystallinity of VO_{2} thin films. To improve the film homogeneity, the substrates were rotated along the vertical axis at a speed of 10 rpm.

The structure of the films was characterized by Raman spectrometer (Renishaw inVia Raman microscope) using a 514.5 nm laser. The optical transmittance was measured at a photon energy range of 0.73–5.05 eV at 26°C and 95°C by a spectrophotometer (Hitachi Corp., Model UV-4100). Temperature was measured using a PT100 temperature sensor in contact with the films and was controlled via a temperature controlling unit. Heating was controlled through a temperature-controlling unit. Hysteresis loops were measured by collecting the transmittance of films at a fixed photon energy (0.83 eV) at a temperature interval of ~2.0°C. Spectroscopic ellipsometry (SE J. A. Woollam M-2000) measurements were carried out between photon energies of 0.73 and 5.05 eV at 75° angle of incidence and the results were modeled using a commercial software.

#### 3. Results and Discussion

##### 3.1. Structural Characterization

Raman measurements were conducted to examine the effect of O_{2}-Ar ratio on the microstructure of VO_{2} (Figure 1(a)). The Raman spectrum at room temperature shows characteristic vibration modes for the M_{1} semiconducting phase of VO_{2}. Comparing to previous works, Raman peaks are identified as 194(Ag), 223(Ag), 262(Bg), 307(Bg), 391(Ag), 492(Ag), and 618(Ag) cm^{−1} [9–11]. No Raman shifts for other kinds of vanadium oxides and any types of other polymorphs of VO_{2} (M_{2}/T) [12, 13] were identified within the measurement accuracy (±0.2 cm^{−1}). The XRD spectra are shown in Figure 1(b). All peaks can be indexed to VO_{2}(M) and (011) was the prominent plane for VO_{2} thin film. No reflections due to other phases such as V_{4}O_{7}, V_{6}O_{13} and V_{3}O_{7} were observed [14, 15].

##### 3.2. Optical Properties of the VO_{2} Films

Figures 2(a) and 2(b) show the transmittance and absorptivity spectra of the prepared VO_{2} thin films at different O_{2}-Ar ratios. The SMT transition is clearly observed with a dramatic change in the infrared transmittance with varied temperature ranges. The absorption edge, luminous (lum) transmittance (, 1.64–3.27 eV), and near-infrared (NIR) transmittance (0.73–1.64 eV) at the high temperature of 95°C were almost the same for all of the samples studied here. However, low temperature (below 26°C) phase VO_{2}(M_{1}) showed a gradually decreased NIR transmittance but increased absorptivity with decreasing O_{2}-Ar ratios.

Thermooptical hysteresis curves were deduced by measuring the transmittance at 0.83 eV with varying temperatures, which are shown in Figure 2(c). For comparison, the vertical axis of this figure has been normalized as . From the -temperature () data, a plot of was obtained, yielding one peak with a well-defined maximum. Each of the curves has been analyzed with a Gaussian function using the single peak fitting module of Originpro 8.0 software. The temperature corresponding to the maximum of was defined as the phase transition temperature during a heating/cooling cycle; and represent the SMT temperature of heating and cooling branches, respectively. The SMT temperature was defined as . As shown in Figure 2(d), the SMT temperatures were 46.2°C, 59.8°C, and 66.4°C for VO_{2} films deposited at the O_{2}-Ar ratio of 1.0 : 49.0, 1.5 : 48.5, and 2.0 : 48.0, respectively. The phase transition temperature consistently decreased as the O_{2}-Ar ratio decreased. It was pointed out that vanadium interstitials and/or oxygen vacancies could reduce the SMT temperature of VO_{2} [16], which is also responsible for the decreased SMT temperatures at low O_{2}-Ar ratios of this work. Low O_{2}-Ar ratios can introduce both extra electrons and internal strains in nonstoichiometric VO_{2} (related data was revealed in a paper submitted to Thin Solid Films, Manuscript Number: TSF-D-13-00641).

##### 3.3. Optical Constant

The electronic transitions, optical constants, and optical band gap (OBG) in the vicinity of the phase transition temperature have been investigated by Li et al. [17]. For a standard bulk VO_{2} sample, when temperature was increased to 67°C, contributions from the Drude response become more prominent. The extinction coefficient and the optical conductivity values at the NIR region rapidly increase with increasing temperature. In this research, electron concentration increases with decreasing O_{2}-Ar ratios and the Drude response is also responsible for the increased and value at the NIR region (Figure 3). However, refractive index was not significantly changed.

##### 3.4. Band Gap

The indirect OBG can be estimated using the power law: where is the absorption coefficient and is the OBG energy. The value is extrapolated by the linear portion of the plot to .

Two electronic transitions can be uniquely assigned, as shown in Figures 4(a) and 4(b). The gaps correlated with absorption edge () at varied O_{2}-Ar ratios are almost the same (~2.0 eV); consequently, the absorption edge was not significantly changed, as shown in Figure 2(a). However, the optical band gap corresponding to SMT () decreases from 0.53 to 0.18 eV with decreasing O_{2}-Ar ratios, as shown in Figures 4(b) and 4(d). The OBG of semiconducting VO_{2} can be assigned to the indirect transition from the top of filled d_{//} bands to the bottom of empty band, as shown using a red arrow in Figure 4(c). Note that at an O_{2}-Ar ratio of 2.0 : 48.0 is similar to that from a previous report by theoretical calculation (0.6 eV) [18] and experimental results by photoemission spectroscopy (0.6 eV) [2]. Besides, the 0.41 eV band gap of the VO_{2} film prepared at an O_{2}-Ar ratio of 1.5 : 48.5 agrees to a calculated intermediate structure at 339.8 K (0.36 eV) [18]. at 1.0 : 49.0 O_{2}-Ar ratio further decreased to 0.18 eV.

When decreasing O_{2}-Ar ratios, the filled d_{//} bands and the empty band are shifted to the higher and lower energy, respectively. Both the d_{//} and bands gradually moved closely, resulting in a redshift of . The decreasing results in a decrement in the SMT energies; therefore the SMT temperature decreased with decreasing O_{2}-Ar ratios. Moreover, with decreasing the O_{2}-Ar ratio, the NIR transmittance of the film evidently decreases. This behavior is because the bandgap of the film, which is narrowing at low O_{2}-Ar ratios, is different at the distinct O_{2}-Ar ratio regions. It can enhance the electronic transitions and results in more interband absorptions at lower O_{2}-Ar ratios, as shown in Figure 2(b).

#### 4. Conclusions

To summarize, diverse phase transformation properties are reported for phase pure VO_{2}(M_{1}) thin films grown at different oxygen partial pressures by reactive magnetron sputtering. The transmittance and absorptivity spectra below phase transition temperatures are closely related to O_{2}-Ar ratios. The phase transition temperature decreased from 66.4°C to 46.2°C as the O_{2}-Ar ratio decreased from 2.0 : 48.0 to 1.0 : 49.0. The optical constants of the VO_{2}(M_{1}) thin films have been determined between 0.73 and 5.05 eV. The near-infrared extinction coefficient and optical conductivity increase with decreasing O_{2}-Ar ratios. Moreover, two electronic transitions were identified. The energy gaps correlated with absorption edge at varied O_{2}-Ar ratios are almost the same, while the optical band gap corresponding to semiconductor-to-metal phase transition decreases from 0.53 to 0.18 eV with decreasing O_{2}-Ar ratios.

#### Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of the article.

#### Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (NSFC, no. 51032008, 51272273, 51102270, 51272271, 51172265, and 51372264), the high-tech project of MOST (2012AA030605 and 2012BAA10B03), and Science and Technology Committee of Shanghai (no. 13PJ1409000).

#### References

- F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,”
*Physical Review Letters*, vol. 3, no. 1, pp. 34–36, 1959. View at Publisher · View at Google Scholar · View at Scopus - T. C. Koethe, Z. Hu, M. W. Haverkort et al., “Transfer of spectral weight and symmetry across the metal-insulator transition in VO
_{2},”*Physical Review Letters*, vol. 97, no. 11, Article ID 116402, 2006. View at Publisher · View at Google Scholar · View at Scopus - Z. Zhang, Y. Gao, H. Luo et al., “Solution-based fabrication of vanadium dioxide on F:SnO
_{2}substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,”*Energy and Environmental Science*, vol. 4, no. 10, pp. 4290–4297, 2011. View at Publisher · View at Google Scholar · View at Scopus - Y. F. Gao, S. B. Wang, L. T. Kang et al., “VO
_{2}-Sb:SnO_{2}composite thermochromic smart glass foil,”*Energy and Environmental Science*, vol. 5, pp. 8234–8237, 2012. View at Google Scholar - Y. Gao, H. Luo, Z. Zhang et al., “Nanoceramic VO
_{2}thermochromic smart glass: a review on progress in solution processing,”*Nano Energy*, vol. 1, no. 2, pp. 221–246, 2012. View at Publisher · View at Google Scholar · View at Scopus - P. P. Boriskov, A. A. Velichko, A. L. Pergament, G. B. Stefanovich, and D. G. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,”
*Technical Physics Letters*, vol. 28, no. 5, pp. 406–408, 2002. View at Publisher · View at Google Scholar · View at Scopus - C. H. Griffiths and H. K. Eastwood, “Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide,”
*Journal of Applied Physics*, vol. 45, no. 5, pp. 2201–2206, 1974. View at Publisher · View at Google Scholar · View at Scopus - J. Li and J. Dho, “Anomalous optical switching and thermal hysteresis behaviors of VO
_{2}films on glass substrate,”*Applied Physics Letters*, vol. 99, no. 23, Article ID 231909, 2011. View at Publisher · View at Google Scholar · View at Scopus - A. C. Jones, S. Berweger, J. Wei, D. Cobden, and M. B. Raschke, “Nano-optical investigations of the metal-insulator phase behavior of individual VO
_{2}microcrystals,”*Nano Letters*, vol. 10, no. 5, pp. 1574–1581, 2010. View at Publisher · View at Google Scholar · View at Scopus - P. Schilbe, “Raman scattering in VO
_{2},”*Physica B*, vol. 316-317, pp. 600–602, 2002. View at Publisher · View at Google Scholar · View at Scopus - J. Y. Chou, J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon, “Vanadium oxide nanowire phase and orientation analyzed by Raman spectroscopy,”
*Journal of Applied Physics*, vol. 105, no. 3, Article ID 034310, 2009. View at Publisher · View at Google Scholar · View at Scopus - C. Marini, E. Arcangeletti, D. di Castro et al., “Optical properties of V
_{1-x}Cr_{x}O_{2}compounds under high pressure,”*Physical Review B*, vol. 77, no. 23, Article ID 235111, 2008. View at Publisher · View at Google Scholar · View at Scopus - J. M. Atkin, S. Berweger, E. K. Chavez et al., “Strain and temperature dependence of the insulating phases of VO
_{2}near the metal-insulator transition,”*Physical Review B*, vol. 85, no. 2, Article ID 020101, 2012. View at Publisher · View at Google Scholar · View at Scopus - Y. D. Ji, T. S. Pan, Z. Bi et al., “Epitaxial growth and metal-insulator transition of vanadium oxide thin films with controllable phases,”
*Applied Physics Letters*, vol. 101, Article ID 071902, 2012. View at Google Scholar - P. Jin and S. Tanemura, “Formation and thermochromism of VO
_{2}films deposited by RF magnetron sputtering at low substrate temperature,”*Japanese Journal of Applied Physics*, vol. 33, no. 3 A, pp. 1478–1483, 1994. View at Google Scholar · View at Scopus - S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,”
*Nano Letters*, vol. 11, no. 4, pp. 1443–1447, 2011. View at Publisher · View at Google Scholar · View at Scopus - W. W. Li, Q. Yu, J. R. Liang et al., “Intrinsic evolutions of optical functions, band gap, and higher-energy electronic transitions in VO
_{2}film near the metal-insulator transition region,”*Applied Physics Letters*, vol. 99, no. 24, Article ID 241903, 2011. View at Publisher · View at Google Scholar · View at Scopus - T. Yao, X. Zhang, Z. Sun et al., “Understanding the nature of the kinetic process in a VO
_{2}metal-insulator transition,”*Physical Review Letters*, vol. 105, no. 22, Article ID 226405, 2010. View at Publisher · View at Google Scholar · View at Scopus