About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 183954, 6 pages
http://dx.doi.org/10.1155/2014/183954
Research Article

Room Temperature Optical Constants and Band Gap Evolution of Phase Pure M1-VO2 Thin Films Deposited at Different Oxygen Partial Pressures by Reactive Magnetron Sputtering

1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics (SIC), Chinese Academy of Sciences (CAS), Dingxi 1295, Changning, Shanghai 200050, China
2Graduate University of Chinese Academy of Sciences, Yuquanlu 19, Beijing 100049, China
3School of Materials Science and Engineering, Shanghai University, 99 Shangda, Shanghai 200444, China

Received 13 October 2013; Accepted 11 December 2013; Published 2 January 2014

Academic Editor: Yoshitake Masuda

Copyright © 2014 Meng Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Physical Review Letters, vol. 3, no. 1, pp. 34–36, 1959. View at Publisher · View at Google Scholar · View at Scopus
  2. T. C. Koethe, Z. Hu, M. W. Haverkort et al., “Transfer of spectral weight and symmetry across the metal-insulator transition in VO2,” Physical Review Letters, vol. 97, no. 11, Article ID 116402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Zhang, Y. Gao, H. Luo et al., “Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications,” Energy and Environmental Science, vol. 4, no. 10, pp. 4290–4297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. F. Gao, S. B. Wang, L. T. Kang et al., “VO2-Sb:SnO2 composite thermochromic smart glass foil,” Energy and Environmental Science, vol. 5, pp. 8234–8237, 2012.
  5. Y. Gao, H. Luo, Z. Zhang et al., “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy, vol. 1, no. 2, pp. 221–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. P. P. Boriskov, A. A. Velichko, A. L. Pergament, G. B. Stefanovich, and D. G. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Technical Physics Letters, vol. 28, no. 5, pp. 406–408, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Griffiths and H. K. Eastwood, “Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide,” Journal of Applied Physics, vol. 45, no. 5, pp. 2201–2206, 1974. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Li and J. Dho, “Anomalous optical switching and thermal hysteresis behaviors of VO2 films on glass substrate,” Applied Physics Letters, vol. 99, no. 23, Article ID 231909, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. C. Jones, S. Berweger, J. Wei, D. Cobden, and M. B. Raschke, “Nano-optical investigations of the metal-insulator phase behavior of individual VO2 microcrystals,” Nano Letters, vol. 10, no. 5, pp. 1574–1581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Schilbe, “Raman scattering in VO2,” Physica B, vol. 316-317, pp. 600–602, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Y. Chou, J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon, “Vanadium oxide nanowire phase and orientation analyzed by Raman spectroscopy,” Journal of Applied Physics, vol. 105, no. 3, Article ID 034310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Marini, E. Arcangeletti, D. di Castro et al., “Optical properties of V1-xCrxO2 compounds under high pressure,” Physical Review B, vol. 77, no. 23, Article ID 235111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Atkin, S. Berweger, E. K. Chavez et al., “Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition,” Physical Review B, vol. 85, no. 2, Article ID 020101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. D. Ji, T. S. Pan, Z. Bi et al., “Epitaxial growth and metal-insulator transition of vanadium oxide thin films with controllable phases,” Applied Physics Letters, vol. 101, Article ID 071902, 2012.
  15. P. Jin and S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Japanese Journal of Applied Physics, vol. 33, no. 3 A, pp. 1478–1483, 1994. View at Scopus
  16. S. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Letters, vol. 11, no. 4, pp. 1443–1447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. W. W. Li, Q. Yu, J. R. Liang et al., “Intrinsic evolutions of optical functions, band gap, and higher-energy electronic transitions in VO2 film near the metal-insulator transition region,” Applied Physics Letters, vol. 99, no. 24, Article ID 241903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Yao, X. Zhang, Z. Sun et al., “Understanding the nature of the kinetic process in a VO2 metal-insulator transition,” Physical Review Letters, vol. 105, no. 22, Article ID 226405, 2010. View at Publisher · View at Google Scholar · View at Scopus