About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 209049, 7 pages
http://dx.doi.org/10.1155/2014/209049
Research Article

Fabrication of Nanohydroxyapatite/Poly(caprolactone) Composite Microfibers Using Electrospinning Technique for Tissue Engineering Applications

1Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Skudai, Johor, Malaysia
2Miniaturized Medical Devices Program, Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117685

Received 19 March 2014; Revised 5 June 2014; Accepted 16 June 2014; Published 25 June 2014

Academic Editor: Zhongkui Hong

Copyright © 2014 Mohd Izzat Hassan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Sultana and T. H. Khan, “Polycaprolactone scaffolds and hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering,” Journal of Bionanoscience, vol. 7, no. 2, pp. 169–173, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Sultana and T. H. Khan, “Water absorption and diffusion characteristics of nanohydroxyapatite (nHA) and poly(hydroxybutyrate-co-hydroxyvalerate-) based composite tissue engineering scaffolds and nonporous thin films,” Journal of Nanomaterials, vol. 2013, Article ID 479109, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. Z.-L. Mou, L.-M. Duan, X.-N. Qi, and Z.-Q. Zhang, “Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method,” Materials Letters, vol. 105, pp. 189–191, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Ji, N. Annabi, M. Hosseinkhani, S. Sivaloganathan, and F. Dehghani, “Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique,” Acta Biomaterialia, vol. 8, no. 2, pp. 570–578, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. L. van der Schueren, B. de Schoenmaker, Ö. I. Kalaoglu, and K. de Clerck, “An alternative solvent system for the steady state electrospinning of polycaprolactone,” European Polymer Journal, vol. 47, no. 6, pp. 1256–1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Serra, J. A. Planell, and M. Navarro, “High-resolution PLA-based composite scaffolds via 3-D printing technology,” Acta Biomaterialia, vol. 9, no. 3, pp. 5521–5530, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. K. T. Shalumon, K. H. Anulekha, K. P. Chennazhi, H. Tamura, S. V. Nair, and R. Jayakumar, “Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering,” International Journal of Biological Macromolecules, vol. 48, no. 4, pp. 571–576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. O. Zoppe, M. S. Peresin, Y. Habibi, R. A. Venditti, and O. J. Rojas, “Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals,” ACS Applied Materials and Interfaces, vol. 1, no. 9, pp. 1996–2004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Simşek, M. Capkın, A. Karakeçili, and M. Gümüşderelioğlu, “Chitosan and polycaprolactone membranes patterned via electrospinning: effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior,” Journal of Biomedical Materials Research A, vol. 100, no. 12, pp. 3332–3343, 2012. View at Publisher · View at Google Scholar
  10. T.-H. Nguyen, T. Q. Bao, I. Park, and B.-T. Lee, “A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering,” Journal of Biomaterials Applications, vol. 28, no. 4, pp. 514–528, 2013.
  11. Z. Chen, L. Cao, L. Wang, H. Zhu, and H. Jiang, “Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(ε-caprolactone) and gelatin,” Journal of Applied Polymer Science, vol. 127, no. 6, pp. 4225–4232, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Hassan, M. Mokhtar, N. Sultana, and T. H. Khan, “Production of hydroxyapatite(HA) nanoparticle and HA/PCL tissue engineering scaffolds for bone tissue engineering,” in Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES '12), pp. 239–242.
  13. W. Y. Zhou, M. Wang, W. L. Cheung, B. C. Guo, and D. M. Jia, “Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 1, pp. 103–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Sun, T. H. Khan, and N. Sultana, “Fabrication and in vitro evaluation of nanosized hydroxyapatite/chitosan—base d tissue engineering scaffolds,” Journal of Nanomaterials, vol. 2014, Article ID 194680, 8 pages, 2014. View at Publisher · View at Google Scholar
  15. D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology, vol. 7, no. 3, pp. 216–223, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. L. A. Bosworth and S. Downes, “Acetone, a sustainable solvent for electrospinning poly(ε-caprolactone) fibres: effect of varying parameters and solution concentrations on fibre diameter,” Journal of Polymers and the Environment, vol. 20, no. 3, pp. 879–886, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. X. Meng, W. Zheng, L. Li, and Y. F. Zheng, “Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning,” Materials Science and Engineering C, vol. 30, no. 7, pp. 1014–1021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Amna, N. A. M. Barakat, M. S. Hassan, M. Khil, and H. Y. Kim, “Camptothecin loaded poly(ε-caprolactone)nanofibers via one-step electrospinning and their cytotoxicity impact,” Colloids and Surfaces A, vol. 431, pp. 1–8, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Croisier, A.-S. Duwez, C. Jérôme et al., “Mechanical testing of electrospun PCL fibers,” Acta Biomaterialia, vol. 8, no. 1, pp. 218–224, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Jaiswal, H. Chhabra, S. S. Kadam, K. Londhe, V. P. Soni, and J. R. Bellare, “Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: a comparative study,” Materials Science and Engineering C, vol. 33, no. 5, pp. 2926–2936, 2013. View at Publisher · View at Google Scholar · View at Scopus