About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 249603, 9 pages
http://dx.doi.org/10.1155/2014/249603
Research Article

Decontamination of Surfaces Exposed to Carbon-Based Nanotubes and Nanomaterials

1FM Global, Norwood, MA 02062, USA
2Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA

Received 10 October 2013; Accepted 12 December 2013; Published 16 January 2014

Academic Editor: Aiying Wang

Copyright © 2014 Paul Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The project on emerging nanotechnologies, Nanotechnology Consumer Products Inventory, http://www.nanotechproject.org/inventories/consumer/analysis_draft/.
  2. A. Dowling, Nanoscience and Nanotechnologies: Opportunities and Uncertainties, The Royal Society and the Royal Academy of Engineering, London, UK, 2004.
  3. S. S. Oh, D. H. Kim, M.-W. Moon et al., “Indium nanowires synthesized at an ultrafast rate,” Advanced Materials, vol. 20, no. 6, pp. 1093–1098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Glotzer, International Assessment of Research and Development in Simulation-Based Engineering and Science, Imperial College Press, London, UK, 2010.
  5. “News briefing,” Nature, vol. 461, pp. 702–703, 2009. View at Publisher · View at Google Scholar
  6. Progress and perspectives in the carbon nanotube world, http://www.azonano.com/details.asp?articleID=2619.
  7. A. M. Thayer, “Carbon nanotubes by the metric ton: anticipating new commercial applications, producers increase capacity,” Chemical & Engineering News, vol. 85, no. 46, pp. 29–38, 2007. View at Publisher · View at Google Scholar
  8. National Institute for Occupational Safety and Health-NIOSH, “Approaches to safe nanotechnology—managing the health and safety concerns associated with engineered nanomaterials,” 2009, http://www.cdc.gov/niosh/docs/2009-125/.
  9. US Department of Energy, “Approaches to Nanomaterial ES&H,” Department of Energy, Nanoscale Science Centers, 2008, http://science.energy.gov/~/media/bes/pdf/doe_nsrc_approach_to_nanomaterial_esh.pdf.
  10. “Report, L.s.E.R.T., Nanotechnology: Recent Developments, Risks and Opportunities,” 2007, http://www.lloyds.com/~/media/Lloyds/Archive/Lloyds%20Market%20Gallery/Lloyds%20Market%20Gallery/ER_Nanotechnology_Report.pdf.
  11. A. Hett, Nanotechnology: Small Size—Large Impact, Risk Dialogue Series, Swiss Reinsurance, Zurich, Switzerland, 2005.
  12. US Environmental Protection Agency-EPA, Nanotechnology white paper, 2007, http://www.epa.gov/osa/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf.
  13. National Institute for Occupational Safety and Health-NIOSH, “Progress toward safe nanotechnology in the workplace,” 2007.
  14. A. C. Lin, “Size matters: regulating nanotechnology,” Harvard Environmental Law Review, vol. 31, no. 2, pp. 349–408, 2007. View at Scopus
  15. P. Su, It Is a Small World, Reason, FM Global Research, Norwood, Mass, USA, 2010.
  16. National Institute for Occupational Safety and Health-NIOSH, “Interim guidance for worker medical screening, hazard surveillance pertaining to engineered nanoparticles,” 2009, http://www.cdc.gov/niosh/docs/2009-116/.
  17. Y. Ju-Nam and J. R. Lead, “Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications,” Science of the Total Environment, vol. 400, no. 1–3, pp. 396–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. National Institute for Occupational Safety and Health-NIOSH, Strategic plan for NIOSH nanotechnology research and guidance, http://www.cdc.gov/niosh/docs/2010-105/.
  19. C. A. Poland, R. Duffin, I. Kinloch et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, vol. 3, no. 7, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. J. Feron, J. H. E. Arts, C. F. Kuper, P. J. Slootweg, and R. A. Woutersen, “Health risks associated with inhaled nasal toxicants,” Critical Reviews in Toxicology, vol. 31, no. 3, pp. 313–347, 2001. View at Scopus
  21. A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, and V. Castranova, “Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material,” Journal of Toxicology and Environmental Health A, vol. 67, no. 1, pp. 87–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Jia, H. Wang, L. Yan et al., “Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene,” Environmental Science & Technology, vol. 39, no. 5, pp. 1378–1383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Kirchner, T. Liedl, S. Kudera et al., “Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles,” Nano Letters, vol. 5, no. 2, pp. 331–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanopartides,” Small, vol. 4, no. 1, pp. 26–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C.-W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation,” Toxicological Sciences, vol. 77, no. 1, pp. 126–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. F. Hansen, E. S. Michelson, A. Kamper, P. Borling, F. Stuer-Lauridsen, and A. Baun, “Categorization framework to aid exposure assessment of nanomaterials in consumer products,” Ecotoxicology, vol. 17, no. 5, pp. 438–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. D. Ok, J. C. Benneyan, and J. A. Isaacs, “Nanotechnology environmental, health, and safety issues: brief literature review since 2000,” in Proceedings of the IEEE International Symposium on Sustainable Systems and Technology (ISSST '09), pp. 1–5, Phoenix, Ariz, USA, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. A. Borm, D. Robbins, S. Haubold et al., “The potential risks of nanomaterials: a review carried out for ECETOC,” Particle and Fibre Toxicology, vol. 3, no. 1, article 11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Hardman, “A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors,” Environmental Health Perspectives, vol. 114, no. 2, pp. 165–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Liu, D. M. Aruguete, M. Murayama, and M. F. Hochella Jr., “Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS),” Environmental Science & Technology, vol. 43, no. 21, pp. 8178–8183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. J. Aitken, K. S. Creely, and C. L. Tran, Nanoparticles: An Occupational Hygiene Review, Institute of Occupational Medicine, Edinburgh, UK, 2004.
  32. AFSSET, “Nanomaterials: Effects on the Environment and Human Health,” 2006, http://www.afssa.fr/ET/DocumentsET/afsset-summary-nanomaterials.pdf.
  33. L. Golanski, A. Guiot, and F. Tardif, “Efficiency of fibrous filters and personal protective equipments against nanoaerosols,” Tech. Rep., Euripean Strategy for Nanosafety, 2008.
  34. AFSSET, “Nanomaterials and occupational safety,” 2008, http://www.afssa.fr/ET/DocumentsET/08_07_ED_Nanomateriaux_2_Avis_EV.pdf.
  35. S.-T. Yang, H. Wang, Y. Wang, Y. Wang, H. Nie, and Y. Liu, “Removal of carbon nanotubes from aqueous environment with filter paper,” Chemosphere, vol. 82, no. 4, pp. 621–626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. T. S. Chow, “Size-dependent adhesion of nanoparticles on rough substrates,” Journal of Physics Condensed Matter, vol. 15, no. 2, pp. L83–L87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Joo and D. F. Baldwin, “Adhesion mechanisms of nanoparticle silver to substrate materials: identification,” Nanotechnology, vol. 21, no. 5, Article ID 055204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. Whittaker, E. D. Minot, D. M. Tanenbaum, P. L. McEuen, and R. C. Davis, “Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate,” Nano Letters, vol. 6, no. 5, pp. 953–957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Qu, L. Dai, M. Stone, Z. Xia, and L. W. Zhong, “Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off,” Science, vol. 322, no. 5899, pp. 238–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Zhou, Y. Huang, B. Liu, et al., “Adhesion between carbon nanotubes and substrate: mimicking the gecko foot-hair,” Nano, vol. 2, no. 3, pp. 175–179, 2007. View at Publisher · View at Google Scholar
  41. B. Yurdumakan, N. R. Raravikar, P. M. Ajayan, and A. Dhinojwala, “Synthetic gecko foot-hairs from multiwalled carbon nanotubes,” Chemical Communications, no. 30, pp. 3799–3801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Hu, T. H. Kim, J. G. Park, and A. A. Busnaina, “Effect of different deposition mediums on the adhesion and removal of particles,” Journal of the Electrochemical Society, vol. 157, no. 6, pp. H662–H665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. S. Rimai, D. J. Quesnel, and A. A. Busnaina, “The adhesion of dry particles in the nanometer to micrometer-size range,” Colloids and Surfaces A, vol. 165, no. 1–3, pp. 3–10, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. A. A. Busnaina and T. Elsawy, “The effect of relative humidity on particle adhesion and removal,” The Journal of Adhesion, vol. 74, no. 1–4, pp. 391–409, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Tang and A. A. Busnaina, “The effect of time and humidity on particle adhesion and removal,” The Journal of Adhesion, vol. 74, no. 1–4, pp. 411–419, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Krishnan, A. A. Busnaina, D. S. Rimai, and L. P. Demejo, “The adhesion-induced deformation and the removal of submicrometer particles,” Journal of Adhesion Science and Technology, vol. 8, no. 11, pp. 1357–1370, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Busnaina, J. Taylor, and I. Kashkoush, “Measurement of the adhesion and removal forces of submicrometer particles on silicon substrates,” Journal of Adhesion Science and Technology, vol. 7, no. 5, pp. 441–455, 1993. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Karimi, T. Kim, J. Aceros, J. Park, and A. A. Busnaina, “The removal of nanoparticles from sub-micron trenches using megasonics,” Microelectronic Engineering, vol. 87, no. 9, pp. 1665–1668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Bakhtari, R. O. Guldiken, P. Makaram, A. A. Busnaina, and J.-G. Park, “Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time,” Journal of the Electrochemical Society, vol. 153, no. 9, pp. G846–G850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Bakhtari, R. O. Guldiken, A. A. Busnaina, and J.-G. Park, “Experimental and analytical study of submicrometer particle removal from deep trenches,” Journal of the Electrochemical Society, vol. 153, no. 9, pp. C603–C607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Guldiken, K. Bakhtari, A. Busnaina, and J. Park, “Metrology and removal of nanoparticles from 500 micron deep trenches,” Solid State Phenomena, vol. 103-104, pp. 137–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Moumen and A. A. Busnaina, “Removal of submicrometre alumina particles from silicon oxide substrates,” Surface Engineering, vol. 17, no. 5, pp. 422–424, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. A. A. Busnaina and F. Dai, “The removal of submicron particles in liquid-based cleaning,” The Journal of Adhesion, vol. 67, no. 1–4, pp. 181–193, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. A. A. Busnaina and G. W. Gale, “Removal of silica particles from silicon substrates using megasonic cleaning,” Particulate Science and Technology, vol. 15, no. 3-4, pp. 361–369, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. G. W. Gale and A. A. Busnaina, “Removal of particulate contaminants using ultrasonics and megasonics: a review,” Particulate Science and Technology, vol. 13, no. 3-4, pp. 197–211, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. D. S. Rimai and A. A. Busnaina, “Adhesion and removal of particles from surfaces,” Particulate Science and Technology, vol. 13, no. 3-4, pp. 249–270, 1995. View at Publisher · View at Google Scholar · View at Scopus
  57. A. A. Busnaina, I. I. Kashkoush, and G. W. Gale, “An experimental study of megasonic cleaning of silicon wafers,” Journal of the Electrochemical Society, vol. 142, no. 8, pp. 2812–2817, 1995. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Busnaina and I. Kashkoush, “The effect of time, temperature and particle size on submicron particle removal using ultrasonic cleaning,” Chemical Engineering Communications, vol. 125, no. 1, pp. 47–61, 1993. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Kashkoush and A. Busnaina, “Submicron particle removal using ultrasonic cleaning,” Particulate Science and Technology, vol. 11, no. 1-2, pp. 11–24, 1993. View at Publisher · View at Google Scholar
  60. British Standard Institute, “Nanotechnologies—part 1: good practices guide for specifying manufactured nanomaterials,” 2007, http://www3.imperial.ac.uk/pls/portallive/docs/1/34683697.PDF.
  61. British Standard Institute, “Nanotechnologies—part 2: guide to safe handling and disposal of manufactured nanomaterials,” 2007, http://www3.imperial.ac.uk/pls/portallive/docs/1/34683696.PDF.
  62. BAUA, “Guidance for the handling and use of nanomaterials at the workplace,” 2007.
  63. M. Klenke, “First results for safe procedures for handling nanoparticles,” Tech. Rep., European Strategy for Nanosafety, 2008.
  64. D. Fleury, J. A. S. Bomfim, S. Metz, J. X. Bouillard, and J.-M. Brignon, “Nanoparticle risk management and cost evaluation: a general framework,” Journal of Physics, vol. 304, no. 1, Article ID 012084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Vaisman, H. D. Wagner, and G. Marom, “The role of surfactants in dispersion of carbon nanotubes,” Advances in Colloid and Interface Science, vol. 128–130, pp. 37–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, “Solubility of C60 in a variety of solvents,” The Journal of Physical Chemistry, vol. 97, no. 13, pp. 3379–3383, 1993. View at Publisher · View at Google Scholar · View at Scopus
  67. W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochemical and Biophysical Research Communications, vol. 348, no. 3, pp. 781–786, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. B. L. Frankamp, N. O. Fischer, R. Hong, S. Srivastava, and V. M. Rotello, “Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles,” Chemistry of Materials, vol. 18, no. 4, pp. 956–959, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Letters, vol. 3, no. 2, pp. 269–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. S.-W. Kim, S. Kim, J. B. Tracy, A. Jasanoff, and M. G. Bawendi, “Phosphine oxide polymer for water-soluble nanoparticles,” Journal of the American Chemical Society, vol. 127, no. 13, pp. 4556–4557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. C. X. Song, V. Labhasetwar, H. Murphy et al., “Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery,” Journal of Controlled Release, vol. 43, no. 2-3, pp. 197–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Yu, N. Grossiord, C. E. Koning, and J. Loos, “Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution,” Carbon, vol. 45, no. 3, pp. 618–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Wang, W. Zhou, D. L. Ho et al., “Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study,” Nano Letters, vol. 4, no. 9, pp. 1789–1793, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, and D. E. Resasco, “Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS,” The Journal of Physical Chemistry B, vol. 107, no. 48, pp. 13357–13367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. V. C. Moore, M. S. Strano, E. H. Haroz et al., “Individually suspended single-walled carbon nanotubes in various surfactants,” Nano Letters, vol. 3, no. 10, pp. 1379–1382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Sun, V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne, and J. N. Coleman, “Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential,” The Journal of Physical Chemistry C, vol. 112, no. 29, pp. 10692–10699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, “Dissolution of small diameter single-wall carbon nanotubes in organic solvents?” Chemical Communications, no. 2, pp. 193–194, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. B. J. Landi, H. J. Ruf, J. J. Worman, and R. P. Raffaelle, “Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes,” The Journal of Physical Chemistry B, vol. 108, no. 44, pp. 17089–17095, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. S. D. Bergin, Z. Sun, P. Streich, J. Hamilton, and J. N. Coleman, “New solvents for nanotubes: approaching the dispersibility of surfactants,” The Journal of Physical Chemistry C, vol. 114, no. 1, pp. 231–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, “Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes,” The Journal of Physical Chemistry B, vol. 104, no. 38, pp. 8911–8915, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. A. N. G. Parra-Vasquez, N. Behabtu, M. J. Green et al., “Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes,” ACS Nano, vol. 4, no. 7, pp. 3969–3978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. D. Bergin, V. Nicolosi, P. V. Streich et al., “Towards solutions of single-walled carbon nanotubes in common solvents,” Advanced Materials, vol. 20, no. 10, pp. 1876–1881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. J. N. Coleman, A. B. Dalton, S. Curran, et al., “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Advanced Materials, vol. 12, no. 3, pp. 213–216, 2000.
  84. M. J. O'Connell, P. Boul, L. M. Ericson et al., “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping,” Chemical Physics Letters, vol. 342, no. 3-4, pp. 265–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, and R. Yerushalmi-Rozen, “Stabilization of individual carbon nanotubes in aqueous solutions,” Nano Letters, vol. 2, no. 1, pp. 25–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Haggenmueller, S. S. Rahatekar, J. A. Fagan et al., “Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules,” Langmuir, vol. 24, no. 9, pp. 5070–5078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Badaire, C. Zakri, M. Maugey et al., “Liquid crystals of DNA-stabilized carbon nanotubes,” Advanced Materials, vol. 17, no. 13, pp. 1673–1676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Zheng, A. Jagota, M. S. Strano et al., “Structure-based carbon nanotube sorting by sequence-dependent DNA assembly,” Science, vol. 302, no. 5650, pp. 1545–1548, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. W. A. Scrivens and J. M. Tour, “Potent solvents for C60 and their utility for the rapid acquisition of 13C NMR data for fullerenes,” Journal of the Chemical Society, Chemical Communications, no. 15, pp. 1207–1209, 1993. View at Publisher · View at Google Scholar · View at Scopus
  90. M. T. Beck, “Solubility and molecular state of C60 and C70 in solvents and solvent mixtures,” Pure and Applied Chemistry, vol. 70, no. 10, pp. 1881–1887, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Tomiyama, S. Uchiyama, and H. Shinohara, “Solubility and partial specific volumes of C60 and C70,” Chemical Physics Letters, vol. 264, no. 1-2, pp. 143–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. V. N. Bezmel'nitsyn, A. V. Eletskii, and M. V. Okun', “Fullerenes in solutions,” Physics-Uspekhi, vol. 41, no. 11, article 1091, 1998. View at Publisher · View at Google Scholar
  93. K. N. Semenov, N. A. Charykov, V. A. Keskinov, A. K. Piartman, A. A. Blokhin, and A. A. Kopyrin, “Solubility of light fullerenes in organic solvents,” Journal of Chemical & Engineering Data, vol. 55, no. 1, pp. 13–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Marcus, A. L. Smith, M. V. Korobov, A. L. Mirakyan, N. V. Avramenko, and E. B. Stukalin, “Solubility of C60 fullerene,” The Journal of Physical Chemistry B, vol. 105, no. 13, pp. 2499–2506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Sivaraman, R. Dhamodaran, I. Kaliappan, T. G. Srinivasan, P. R. Vasudeva Rao, and C. K. Mathews, “Solubility of C60 in organic solvents,” The Journal of Organic Chemistry, vol. 57, no. 22, pp. 6077–6079, 1992. View at Publisher · View at Google Scholar · View at Scopus
  96. N. Sivaraman, R. Dhamodaran, I. Kaliappan, T. G. Srinivasan, V. P. R. Rao, and C. K. Mathews, “Solubility of C70 in organic solvents,” Fullerene Science and Technology, vol. 2, no. 3, pp. 233–246, 1994. View at Publisher · View at Google Scholar · View at Scopus
  97. X. Zhou, J. Liu, Z. Jin, Z. Gu, Y. Wu, and Y. Sun, “Solubility of fullerene C60 and C70 in toluene, O-xylene and carbon disulfide at various temperatures,” Fullerene Science and Technology, vol. 5, no. 1, pp. 285–290, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. M. V. Korobov, A. L. Mirakyan, N. V. Avramenko, G. Olofsson, A. L. Smith, and R. S. Ruoff, “Calorimetric studies of solvates of C60 and C70 with aromatic solvents,” The Journal of Physical Chemistry B, vol. 103, no. 8, pp. 1339–1346, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Heymann, “Solubility of C60 in alcohols and alkanes,” Carbon, vol. 34, no. 5, pp. 627–631, 1996. View at Publisher · View at Google Scholar
  100. S. Talukdar, P. Pradhan, and A. Banerji, “Electron donor-acceptor interactions of C60 with n-and π-donors : a rational approach towards its solubility,” Fullerene Science and Technology, vol. 5, no. 3, pp. 547–557, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. N. V. Avramenko, E. B. Stukalin, and M. V. Korobov, “Thermodynamic properties of the molecular complexes of C60 with monosubstituted naphthalenes,” Journal of Thermal Analysis and Calorimetry, vol. 82, no. 1, pp. 125–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. I. Ramakanth and A. Patnaik, “Characteristics of solubilization and encapsulation of fullerene C60 in non-ionic Triton X-100 micelles,” Carbon, vol. 46, no. 4, pp. 692–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Beeby, J. Eastoe, and R. K. Heenan, “Solubilisation of C60 in aqueous micellar solution,” Journal of the Chemical Society, Chemical Communications, no. 2, pp. 173–175, 1994. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. N. Yamakoshi, T. Yagami, K. Fukuhara, S. Sueyoshi, and N. Miyata, “Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests,” Journal of the Chemical Society, Chemical Communications, no. 4, pp. 517–518, 1994. View at Publisher · View at Google Scholar · View at Scopus
  105. D. T. Lai, M. A. Neumann, M. Matsumoto, and J. Sunamoto, “Complexation of C60 fullerene with cholesteryl group-bearing pullulan in aqueous medium,” Chemistry Letters, vol. 29, no. 1, pp. 64–65, 2000. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Hungerbuehler, D. M. Guldi, and K. D. Asmus, “Incorporation of C60 into artificial lipid membranes,” Journal of the American Chemical Society, vol. 115, no. 8, pp. 3386–3387, 1993. View at Publisher · View at Google Scholar
  107. R. S. Ruoff, R. Malhotra, D. L. Huestis, D. S. Tse, and D. C. Lorents, “Anomalous solubility behaviour of C60,” Nature, vol. 362, no. 6416, pp. 140–141, 1993. View at Publisher · View at Google Scholar · View at Scopus
  108. R. J. Doome, S. Dermaut, A. Fonseca, M. Hammida, and J. B. Nagy, “New evidences for the anomalous temperature-dependent solubility of C60 and C70 fullerenes in various solvents,” Fullerene Science and Technology, vol. 5, no. 7, pp. 1593–1606, 1997. View at Publisher · View at Google Scholar · View at Scopus
  109. M. T. Beck, G. Mandi, and S. Keki, “Solubility and molecular state of C60 in organic solvents,” in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials. 187th Electrochemical Society Meeting, pp. 1510–1518, Electrochemical Society, Reno, Nev, USA, 1995.
  110. D. Ng, P. Y. Huang, Y. R. Jeng, and H. Liang, “Nanoparticle removal mechanisms during post-CMP cleaning,” Electrochemical and Solid-State Letters, vol. 10, no. 8, pp. H227–H231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Yurekli, C. A. Mitchell, and R. Krishnamoorti, “Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes,” Journal of the American Chemical Society, vol. 126, no. 32, pp. 9902–9903, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. D. Ng, S. Kundu, M. Kulkarni, and H. Liang, “Role of surfactant molecules in post-CMP cleaning,” Journal of the Electrochemical Society, vol. 155, no. 2, pp. H64–H68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. M. J. O'Connell, S. H. Bachilo, C. B. Huffman et al., “Band gap fluorescence from individual single-walled carbon nanotubes,” Science, vol. 297, no. 5581, pp. 593–596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Y. Huang and E. M. Terentjev, “Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties,” Polymers, vol. 4, no. 1, pp. 275–295, 2012. View at Publisher · View at Google Scholar