About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 294385, 7 pages
http://dx.doi.org/10.1155/2014/294385
Research Article

Improvement of Porous GaAs (100) Structure through Electrochemical Etching Based on DMF Solution

Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

Received 15 April 2014; Accepted 16 June 2014; Published 30 June 2014

Academic Editor: Anukorn Phuruangrat

Copyright © 2014 Muhamad Ikram Md Taib et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. V. Kidalov, G. A. Sukach, A. O. Petukhov, A. S. Revenko, and E. P. Potapenko, “Photoluminescent and structural properties of GaN thin films obtained by radical-beam gettering epitaxy on porous GaAs (0 0 1),” Journal of Luminescence, vol. 102-103, pp. 712–714, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. I. M. Tiginyanu, G. Irmer, J. Monecke, A. Vogt, and H. L. Hartnagel, “Porosity-induced modification of the phonon spectrum of n-GaAs,” Semiconductor Science and Technology, vol. 12, no. 4, pp. 491–493, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Langa, J. Carstensen, M. Christophersen et al., “Uniform and nonuniform nucleation of pores during the anodization of Si, Ge, and III-V semiconductors,” Journal of the Electrochemical Society, vol. 152, no. 8, pp. C525–C531, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Naddaf and S. Saloum, “Nanostructuring-induced modification of optical properties of p-GaAs (1 0 0),” Physica E: Low-Dimensional Systems and Nanostructures, vol. 41, no. 10, pp. 1784–1788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Schmuki, L. E. Erikson, D. J. Lockwood, J. W. Fraser, G. Champion, and H. J. Labbé, “Formation of visible light emitting porous GaAs micropatterns,” Applied Physics Letters, vol. 72, no. 9, 1998.
  6. M. Naddaf and M. Saad, “Novel optical and structural properties of porous GaAs formed by anodic etching of n+-GaAs in a HF:C2H5OH:HCl:H2O2:H2O electrolyte: effect of etching time,” Journal of Materials Science: Materials in Electronics, vol. 24, no. 7, pp. 2254–2263, 2013. View at Publisher · View at Google Scholar
  7. J. Grym, D. Nohavica, P. Gladkov, E. Hulicius, J. Pangrác, and K. Piksová, “Epitaxial growth on porous GaAs substrates,” Comptes Rendus Chimie, vol. 16, no. 1, pp. 59–64, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. V. V. Kidalov, G. A. Sukach, A. S. Revenko, and A. D. Bayda, “Properties of cubic GaN films obtained by nitridation of porous GaAs(001),” Physica Status Solidi (A) Applications and Materials Science, vol. 202, no. 8, pp. 1668–1672, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Materials Science and Engineering R, vol. 39, no. 4, pp. 93–141, 2002. View at Publisher · View at Google Scholar
  10. S. Ghoshal, A. A. Ansar, S. O. Raja et al., “Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications,” Nanoscale Research Letters, vol. 6, article 540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. Vajpeyi, S. J. Chua, S. Tripathy et al., “High optical quality nanoporous GaN prepared by photoelectrochemical etching,” Electrochemical and Solid-State Letters, vol. 8, no. 4, pp. G85–G88, 2005. View at Publisher · View at Google Scholar · View at Scopus