About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 378981, 6 pages
http://dx.doi.org/10.1155/2014/378981
Research Article

Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

1University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
2Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
3National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania

Received 23 July 2013; Revised 13 November 2013; Accepted 29 November 2013; Published 5 January 2014

Academic Editor: Hyeong-Ho Park

Copyright © 2014 Mihai Razvan Mitroi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Jung and J. K. Lee, “Dye sensitized solar cells for economically viable photovoltaic systems,” The Journal of Physical Chemistry Letters, vol. 4, no. 10, pp. 1682–1693, 2013.
  2. G. Conibeer, M. Green, R. Corkish et al., “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films, vol. 511, pp. 654–662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. R. King, D. C. Law, K. M. Edmondson et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Applied Physics Letters, vol. 90, no. 18, Article ID 183516, 2007.
  4. J. G. J. Adams, B. C. Browne, I. M. Ballard et al., “Recent results for single-junction and tandem quantum well solar cells,” Progress in Photovoltaics, vol. 19, no. 7, pp. 865–877, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Iancu, M. R. Mitroi, A.-M. Lepadatu, I. Stavarache, and M. L. Ciurea, “Calculation of the quantum efficiency for the absorption on confinement levels in quantum dots,” Journal of Nanoparticle Research, vol. 13, no. 4, pp. 1605–1612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Scopus
  7. A. Yella, H.-W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C, vol. 4, no. 2, pp. 145–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Han, A. Islam, H. Chen et al., “High-efficiency dye-sensitized solar cell with a novel co-adsorbent,” Energy and Environmental Science, vol. 5, no. 3, pp. 6057–6060, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Yang, M. Yanagida, and L. Y. Han, “Reliable evaluation of dye-sensitized solar cells,” Energy and Environmental Science, vol. 6, no. 1, pp. 54–66, 2013.
  11. T. Oda, S. Tanaka, and S. Hayase, “Differences in characteristics of dye-sensitized solar cells containing acetonitrile and ionic liquid-based electrolytes studied using a novel model,” Solar Energy Materials and Solar Cells, vol. 90, no. 16, pp. 2696–2709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Ferber, R. Stangl, and J. Luther, “Electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, vol. 53, no. 1-2, pp. 29–54, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Peter, “Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells,” Journal of Electroanalytical Chemistry, vol. 599, no. 2, pp. 233–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Berginc, M. Filipic, U. O. Krašovec et al., “Optical and electrical modelling and characterization of dye-sensitized solar cells,” Current Applied Physics, vol. 10, no. 3, pp. S425–S430, 2010.
  15. J. Bisquert and I. Mora-Seró, “Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length,” Journal of Physical Chemistry Letters, vol. 1, no. 1, pp. 450–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Halme, P. Vahermaa, K. Miettunen, and P. Lund, “Device physics of dye solar cells,” Advanced Materials, vol. 22, no. 35, pp. E210–E234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Onodera, K. Ogiya, A. Suzuki et al., “Modeling of dye-sensitized solar cells based on TiO2 electrode structure model,” Japanese Journal of Applied Physics, vol. 49, no. 4, Article ID 04DP10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Andrade, J. Sousa, H. Aguilar Ribeiro, and A. Mendes, “Phenomenological modeling of dye-sensitized solar cells under transient conditions,” Solar Energy, vol. 85, no. 5, pp. 781–793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Grätzel, and J. O. Schumacher, “Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction,” Journal of Physical Chemistry C, vol. 115, no. 20, pp. 10218–10229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Gentilini, A. Gagliardi, and A. D. Carlo, “Dye solar cells efficiency maps: a parametric study,” Optical and Quantum Electronics, vol. 44, no. 3–5, pp. 155–160, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Nithyanandam and R. Pitchumani, “Analysis and design of dye-sensitized solar cell,” Solar Energy, vol. 86, no. 1, pp. 351–368, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. P. H. Joshi, D. P. Korfiatis, S. F. Potamianou, and K. A. Th. Thoma, “Optimum oxide thickness for dye-sensitized solar cells-effect of porosity and porous size: a numerical approach,” Ionics, vol. 19, no. 3, pp. 571–576, 2013.
  23. M. R. Mitroi and L. Fara, “Organic solar cells modeling and simulation,” in Advanced Solar Cell Materials: Technology, Modeling and Simulation, L. Fara and M. Yamaguchi, Eds., pp. 120–137, IGI Global, 2013.
  24. D. M. B. P. Ariyasinghe, H. M. N. Bandara, R. M. G. Rajapakse, K. Murakami, and M. Shimomura, “Improved performance of dye-sensitized solar cells using a diethyldithiocarbamate-modified TiO2 surface,” Journal of Nanomaterials, vol. 2013, Article ID 258581, 6 pages, 2013. View at Publisher · View at Google Scholar
  25. J. S. Agnaldo, J. C. Cressoni, and G. M. Viswanathan, “Universal aspects of photocurrent-voltage characteristics in dye-sensitized nanocrystalline TiO2 photoelectrochemical cells,” Physical Review B, vol. 79, no. 3, Article ID 035308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–334, 2001.
  27. “Solving Boundary Value Problems in MathCad,” 2013, http://www.chem.mtu.edu/~tbco/cm3450/bvp.pdf.
  28. F. Gao, Y. Wang, D. Shi et al., “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 130, no. 32, pp. 10720–10728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. “ASTM G173-03 Reference Spectra Derived from SMARTS v. 2. 9. 2,” 2012, http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html.
  30. B. E. Hardin, E. T. Hoke, P. B. Armstrong et al., “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nature Photonics, vol. 3, no. 7, pp. 406–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C.-H. Lee, K.-Y. Liu, S.-H. Chang et al., “Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells,” Journal of Colloid and Interface Science, vol. 363, no. 2, pp. 635–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Dittrich, A. Ofir, S. Tirosh, L. Grinis, and A. Zaban, “Influence of the porosity on diffusion and lifetime in porous TiO2 layers,” Applied Physics Letters, vol. 88, no. 18, Article ID 182110, 2006. View at Publisher · View at Google Scholar · View at Scopus