About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 382861, 6 pages
http://dx.doi.org/10.1155/2014/382861
Research Article

A New Method for Fabrication of Nanohydroxyapatite and TCP from the Sea Snail Cerithium vulgatum

1Department of Metal Education, Faculty of Technical Education, Marmara University, Kadıköy, 34722 Istanbul, Turkey
2Center for Nanotechnology and Biomaterials Applied & Research, Marmara University, Kadıköy, 34722 Istanbul, Turkey
3Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Buyukcekmece, 34537 Istanbul, Turkey
4Department of Materials Science and Engineering, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
5Department of Chemistry and Forensic Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, Sydney, NSW 2007, Australia
6Department of Bioengineering, Faculty of Engineering, Marmara University, Kadıköy, 34722 Istanbul, Turkey
7Department of Medical Imaging Techniques, School of Health Related Professions, Marmara University, Tıbbiye Street No. 49, Üsküdar, 34688 Istanbul, Turkey

Received 26 July 2013; Accepted 27 November 2013; Published 2 January 2014

Academic Editor: Il-Kwon Oh

Copyright © 2014 O. Gunduz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Lahiri, S. Ghosh, and A. Agarwal, “Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review,” Materials Science and Engineering C, vol. 32, no. 7, pp. 1727–1758, 2012.
  2. M. R. Foroughi, S. Karbasi, and R. Ebrahimi-Kahrizsangi, “Physical and mechanical properties of a poly-3-hydroxybutyrate-coated nanocrystalline hydroxyapatite scaffold for bone tissue engineering,” Journal of Porous Materials, vol. 19, no. 5, pp. 667–675, 2012.
  3. F. N. Oktar, M. R. Demirer, O. Gunduz et al., “Sintering effect on mechanical properties of composites of bovine hydroxyapatite (BHA) and Li2O,” Key Engineering Materials, vol. 309–311, pp. 49–52, 2006. View at Scopus
  4. S. J. Roll, Processing of hydroxyapatite by biomimetic process, a thesis submitted in partial fulfillment of the requirement for the degree of bachelor of technology [M.S. thesis], Department of Ceramic Engineering, National Institute of Technology Rourkela, Odisha, India, 2006–2010.
  5. G. Goller, F. N. Oktar, L. S. Ozyegin, E. S. Kayali, and E. Demirkesen, “Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable,” Materials Letters, vol. 58, no. 21, pp. 2599–2604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. S. Ozyegin, F. N. Oktar, G. Goller, E. S. Kayali, and T. Yazici, “Plasma-sprayed bovine hydroxyapatite coatings,” Materials Letters, vol. 58, no. 21, pp. 2605–2609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Demirkol, F. N. Oktar, and E. S. Kayali, “Mechanical and microstructural properties of sheep hydroxyapatite (SHA)-niobium oxide composites,” Acta Physica Polonica A, vol. 121, no. 1, pp. 274–276, 2012. View at Scopus
  8. G. Goller and F. N. Oktar, “Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite,” Materials Letters, vol. 56, no. 3, pp. 142–147, 2002. View at Publisher · View at Google Scholar
  9. F. N. Oktar, “Microstructure and mechanical properties of sintered enamel hydroxyapatite,” Ceramics International, vol. 33, no. 7, pp. 1309–1314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Akyurt, U. Karacayli, M. Yetmez, S. S. Pazarlioglu, and F. N. Oktar, “Microstructure and mechanical properties of sintered sheep enamel-derived hydroxyapatite,” International Journal of Artificial Organs, vol. 34, no. 8, p. 700, 2011.
  11. N. Demirkol, M. Yetmez, U. Karacayli et al., “Mechanical properties of hydroxyapatite-tantalum composites,” International Journal of Artificial Organs, vol. 33, p. 468, 2010, (XXXVII Annual ESAO Congress) Skopje, R. Macedonia from 8th to 11th September 2010.
  12. K. Lewis, U. Boonyang, L. Evans, S. Siripaisarnpipat, and B. Ben-Nissan, “A comparative study of Thai and Australian crocodile bone for use as a potential biomaterial,” Key Engineering Materials, vol. 309–311, pp. 15–18, 2006. View at Scopus
  13. M. Bǎciuţ, G. Bǎciuţ, V. Simon et al., “Investigation of deer antler as a potential bone regenerating biomaterial,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 8, pp. 2547–2550, 2007. View at Scopus
  14. J. H. G. Rocha, A. F. Lemos, S. Agathopoulos et al., “Scaffolds for bone restoration from cuttlefish,” Bone, vol. 37, no. 6, pp. 850–857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. F. Lemos, J. H. G. Rocha, S. S. F. Quaresma et al., “Hydroxyapatite nano-powders produced hydrothermally from nacreous material,” Journal of the European Ceramic Society, vol. 26, no. 16, pp. 3639–3646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. B. B. Nissan, A. S. Milev, D. D. Green et al., “Processes for treating coral and coating an object,” US patent no. 2004/0091547 A1, 2004.
  17. D. Agaogulları, D. Kel, H. Gokce et al., “Bioceramic production from sea urchins,” Acta Physica Polonica A, vol. 121, no. 1, pp. 23–26, 2012.
  18. R. Samur, L. S. Ozyegin, and D. Agaogullari, “Calcium phosphate formation from dea urchin-(brissus Latecarinatus) via modified mechano-chemical (ultrasonic) conversion method,” Metalurgija, vol. 52, pp. 375–378, 2013.
  19. A. U. Tuyel, E. T. Oner, S. Ozyegin, and F. N. Oktar, “Production and characterization of bioceramic nanopowders of natural-biological origin,” Journal of Biotechnology, vol. 131S, p. S-65, 2007.
  20. M. L. Tamasan, L. S. Ozyegin, F. N. Oktar, and V. Simon, “Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells,” Materials Science and Engineering C, vol. 33, no. 5, pp. 2569–2577, 2013.
  21. D. Kel, H. Gökçe, D. Bilgiç et al., “Production of natural bioceramic from land snails,” Key Engineering Materials, vol. 493-494, pp. 287–292, 2012.
  22. I. J. Macha, L. S. Ozyegin, J. Chou, R. Samur, F. N. Oktar, and B. Ben-Nissan, “An alternative synthesis method for di calcium phosphate (Monetite) powders from mediterranean mussel (Mytilus galloprovincialis) shells,” Journal of the Australian Ceramic Society, vol. 49, pp. 122–128, 2013.
  23. S. Agathopoulos, L. S. Ozyegin, Z. Ahmad et al., “Nano-bioceramics production from razor shell,” Key Engineering Materials, vol. 493-494, pp. 775–780, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. F. N. Oktar, U. Tuyel, N. Demirkol et al., “A new safe method to produce bioceramic nano-powders from nacre venus verrucosa,” International Journal of Artificial Organs, vol. 33, pp. 467–468, 2010, (XXXVII Annual ESAO Congress) Skopje, R. Macedonia from 8th to 11th September 2010.
  25. A. U. Tuyel, Production and characterization of bioceramic nanopowders of natural-biological origin [M.S. thesis], Institute for Graduate Studies in Pure and Applied Sciences, T.C. Marmara University, 2008.
  26. D. Kel, U. Karacayli, M. Yetmez, L. S. Ozyegin, E. S. Kayalı, and F. N. Oktar, “Hydroxyapatite production with various techniques from sea urchin,” International Journal of Artificial Organs, vol. 34, p. 700, 2011.
  27. April 2013, http://www.marinespecies.org/aphia.php?p=taxdetails&id=139066.
  28. April 2012, http://en.wikipedia.org/wiki/Cerithium_vulgatum.
  29. A. S. Ates, T. Katagan, and A. Kocataş, “Gastropod shell species occupied by hermit crabs (Anomura: Decapoda) along the Turkish coast of the Aegean Sea,” Journal of Zoology, vol. 31, pp. 13–18, 2007.
  30. April 2013, http://www.idscaro.net/sci/01_coll/plates/gastro/pl_cerithiidae_1.htm.
  31. April 2012, http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:marinespecies.org:taxname:139066.
  32. V. I. Zdun and S. M. Ignat'ev, “Black Sea mollusc, Cerithium vulgatum (Gastropoda, Cerithiidae), a new intermediate trematode host,” Parazitologiia, vol. 14, no. 4, pp. 345–348, 1980. View at Scopus
  33. L. S. Ozyegin, F. Sima, C. Ristoscu et al., “Sea snail: an alternative source for nano-bioceramic production,” Key Engineering Materials, vol. 493-494, pp. 781–786, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Balthasar and M. Cusack, “Aragonite-Calcite seas and evolution of biocalcification,” in Proceedings of the 22nd V.M. Goldschmidt Conference, Earth in Evaluation, Montreal, Canada, 2012.
  35. J. J. Song, An in vitro investigation of the spatial control involved in collagen mineralization [M.S. thesis], University of Toronto, 2010.
  36. S. Sai and K. Fujii, “ß-tricalcium phosphate as a bone graft substitut,” Jikeikai Medical Journal, vol. 52, pp. 47–54, 2005.
  37. P. Hernigou, X. Roussignol, C. H. Flouzat-Lachaniette, P. Filippini, I. Guissou, and A. Poignard, “Opening wedge tibial osteotomy for large varus deformity with Ceraver TM resorbable beta tricalcium phosphate wedges,” International Orthopaedics, vol. 34, no. 2, pp. 191–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. R. Boyd, B. J. Meenan, and N. S. Leyland, “Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution,” Surface and Coatings Technology, vol. 200, no. 20-21, pp. 6002–6013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Duta, F. N. Oktar, G. E. Stan et al., “Novel doped hydroxyapatite thin films obtained by pulsed laser deposition,” Applied Surface Science, vol. 265, pp. 41–49, 2013.