About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 426457, 6 pages
http://dx.doi.org/10.1155/2014/426457
Research Article

Investigation of the Photocatalytic Activity of ZnO Nanowires: Substrate Effect and Kinetics Analysis

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

Received 24 January 2014; Accepted 1 June 2014; Published 1 July 2014

Academic Editor: Yanbao Zhao

Copyright © 2014 Jan-Hau Chang and Heh-Nan Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 9, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. C. Chen, W. H. Ma, and J. C. Zhao, “Semiconductor-mediated photodegradation of pollutants under visible-light irradiation,” Chemical Society Reviews, vol. 39, no. 11, pp. 4206–4219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, “Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 65–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Behnajady, N. Modirshahla, and R. Hamzavi, “Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst,” Journal of Hazardous Materials, vol. 133, no. 1–3, pp. 226–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Mijin, M. Savić, P. Snežana et al., “A study of the photocatalytic degradation of metamitron in ZnO water suspensions,” Desalination, vol. 249, no. 1, pp. 286–292, 2009.
  7. Y. A. Chung, Y. C. Chang, M. Y. Lu, C. Y. Wang, and L. J. Chen, “Synthesis and photocatalytic activity of small-diameter ZnO nanorods,” Journal of the Electrochemical Society, vol. 156, no. 5, pp. F75–F79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. B. X. Li and Y. F. Wang, “Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures,” Journal of Physical Chemistry C, vol. 114, no. 2, pp. 890–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Y. Guo, M. K. Fung, F. Fang et al., “ZnO and TiO2 1D nanostructures for photocatalytic applications,” Journal of Alloys and Compounds, vol. 509, no. 4, pp. 1328–1332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. J. Kuo, C. N. Lin, C. L. Kuo, and M. H. Huang, “Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts,” Chemistry of Materials, vol. 19, no. 21, pp. 5143–5147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wang, D. Chen, H. Zhang, J. Z. Zhang, and J. H. Li, “Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity,” Journal of Physical Chemistry C, vol. 112, no. 24, pp. 8850–8855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. X. M. Zhao, B. H. Zhang, K. L. Ai et al., “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” Journal of Materials Chemistry, vol. 19, no. 31, pp. 5547–5553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Wu, L. Shen, H. G. Yu, Y. C. Zhang, and Q. L. Huang, “Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity,” Materials Letters, vol. 74, pp. 236–238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. X. Wang, X. Y. Li, G. Lu, X. Quan, and G. H. Chen, “Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities,” The Journal of Physical Chemistry C, vol. 112, no. 19, pp. 7332–7336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Liu, Z. H. Kang, Z. H. Chen et al., “Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations,” Crystal Growth and Design, vol. 9, no. 7, pp. 3222–3227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. W. Chu, Y. Masuda, T. Ohji, and K. Kato, “Formation and photocatalytic application of ZnO nanotubes using aqueous solution,” Langmuir, vol. 26, no. 4, pp. 2811–2815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Bae, J. B. Han, X. M. Zhang et al., “ZnO nanotubes grown at low temperature using ga as catalysts and their enhanced photocatalytic activities,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10379–10383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. T. Ho, K. C. Chen, H. A. Chen, H. Y. Lin, C. Y. Cheng, and H. N. Lin, “Catalyst-free surface-roughness-assisted growth of large-scale vertically aligned zinc oxide nanowires by thermal evaporation,” Chemistry of Materials, vol. 19, no. 16, pp. 4083–4086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. T. Ho, C. Y. Wang, H. L. Liu, and H. N. Lin, “Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires,” Chemical Physics Letters, vol. 463, no. 1–3, pp. 141–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. T. Ho, C. L. Hsiao, H. Y. Lin, H. A. Chen, C. Y. Wang, and H. N. Lin, “Single-crystalline zinc oxide nanowires as photoanode material for dye-sensitized solar cells,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 10, pp. 6473–6478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kashif, U. Hashim, M. E. Ali et al., “Effect of different seed solutions on the morphology and electrooptical properties of ZnO Nanorods,” Journal of Nanomaterials, vol. 2012, Article ID 452407, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Desikan, S. Armel, H. M. Meyer III, and T. Thundat, “Effect of chain length on nanomechanics of alkanethiol self-assembly,” Nanotechnology, vol. 18, no. 42, Article ID 424028, 2007. View at Publisher · View at Google Scholar · View at Scopus