About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 458245, 8 pages
http://dx.doi.org/10.1155/2014/458245
Research Article

Development of Amperometric Laccase Biosensor through Immobilizing Enzyme in Magnesium-Containing Mesoporous Silica Sieve (Mg-MCM-41)/Polyvinyl Alcohol Matrix

1College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
2College of Mining Technology of TUT, Taiyuan 030024, China
3Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Received 5 September 2013; Accepted 22 October 2013; Published 12 January 2014

Academic Editor: Hui Xia

Copyright © 2014 Z. Dai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kochana, P. Nowak, A. Jarosz-Wilkołazka, and M. Bieroń, “Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds,” Microchemical Journal, vol. 89, no. 2, pp. 171–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Fernandes, I. R. W. Z. de Oliveira, O. Fatibello-Filho, A. Spinelli, and I. C. Vieira, “Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate,” Sensors and Actuators B, vol. 133, no. 1, pp. 202–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Kulys and R. Vidziunaite, “Amperometric biosensors based on recombinant laccases for phenols determination,” Biosensors and Bioelectronics, vol. 18, no. 2-3, pp. 319–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Vianello, A. Cambria, S. Ragusa, M. T. Cambria, L. Zennaro, and A. Rigo, “A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element,” Biosensors and Bioelectronics, vol. 20, no. 2, pp. 315–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Song, J.-D. Huang, B.-Y. Wu, H.-B. Shi, J.-I. Anzai, and Q. Chen, “Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode,” Sensors and Actuators B, vol. 115, no. 2, pp. 626–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Wang, C. Guo, L.-R. Yang, and C.-Z. Liu, “Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance,” Bioresource Technology, vol. 101, no. 23, pp. 8931–8935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. X. Chu, H. Kudo, T. Shirai et al., “A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring,” Biomedical Microdevices, vol. 11, no. 4, pp. 837–842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Barrière, P. Kavanagh, and D. Leech, “A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer,” Electrochimica Acta, vol. 51, no. 24, pp. 5187–5192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Liu, X. Qu, H. Guo, H. Chen, B. Liu, and S. Dong, “Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite,” Biosensors and Bioelectronics, vol. 21, no. 12, pp. 2195–2201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Guo, N. He, S. Ge, D. Yang, and J. Zhang, “MCM-41 mesoporous material modified carbon paste electrode for the determination of cardiac troponin i by anodic stripping voltammetry,” Talanta, vol. 68, no. 1, pp. 61–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. H. Dai, J. Ni, X. H. Huang, G. F. Lu, and J. C. Bao, “Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix,” Bioelectrochemistry, vol. 70, no. 2, pp. 250–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Yao, Y. Zhu, P. Wang, X. Yang, P. Cheng, and H. Lu, “ENFET glucose biosensor produced with mesoporous silica microspheres,” Materials Science and Engineering C, vol. 27, no. 4, pp. 736–740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Miyahara, A. Vinu, and K. Ariga, “Adsorption myoglobin over mesoporous silica molecular sieves: pore size effect and pore-filling model,” Materials Science and Engineering C, vol. 27, no. 2, pp. 232–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. C. R. Hernández, J. E. M. Wejebe, J. I. V. Alcántara, R. M. Ruvalcaba, L. A. G. Serrano, and J. T. Ferrara, “Immobilization of cytochrome P-450 on MCM-41 with different silicon/aluminum ratios,” Microporous and Mesoporous Materials, vol. 80, no. 1–3, pp. 25–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Gao, T. A. Konovalova, T. Xu, and L. D. Kispert, “Electron transfer of carotenoids imbedded in MCM-41 and Ti-MCM-41: EPR, ENDOR, UV-Vis studies,” Journal of Physical Chemistry B, vol. 106, no. 42, pp. 10808–10815, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. A. Konovalova, Y. Gao, R. Schad, L. D. Kispert, C. A. Saylor, and L.-C. Brunel, “Photooxidation of carotenoids in mesoporous MCM-41, NI-MCM-41 and AL-MCM-41 molecular sieves,” Journal of Physical Chemistry B, vol. 105, no. 31, pp. 7459–7464, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Xu, P. Lu, Y. Zhou, Z. Zhao, and M. Guo, “Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA,” Materials Science and Engineering C, vol. 29, no. 7, pp. 2160–2164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X.-G. Zhao, J.-L. Shi, B. Hu, L.-X. Zhang, and Z.-L. Hua, “In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica,” Materials Letters, vol. 58, no. 16, pp. 2152–2156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Yuan, W. Xing, S.-P. Zhuo et al., “Preparation and application of mesoporous Fe/carbon composites as a drug carrier,” Microporous and Mesoporous Materials, vol. 117, no. 3, pp. 678–684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. S. Baranski, T. Krogulec, L. J. Nelson, and P. Norouzi, “High-frequency impedance spectroscopy of platinum ultramicroelectrodes in flowing solutions,” Analytical Chemistry, vol. 70, no. 14, pp. 2895–2901, 1998. View at Scopus
  21. B. Haghighi, A. Jarosz-Wilkołazka, T. Ruzgas, L. Gorton, and A. Leonowicz, “Characterization of graphite electrodes modified with laccases from Trametes hirsuta and Cerrena unicolor and their use for flow injection amperometric determination of some phenolic compounds,” International Journal of Environmental Analytical Chemistry, vol. 85, no. 9–11, pp. 753–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. I. Yaropolov, A. N. Kharybin, J. Emnéus, G. Marko-Varga, and L. Gorton, “Flow-injection analysis of phenols at a graphite electrode modified with co-immobilised laccase and tyrosinase,” Analytica Chimica Acta, vol. 308, no. 1–3, pp. 137–144, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Freire, S. Thongngamdee, N. Durán, J. Wang, and L. T. Kubota, “Mixed enzyme (laccase/tyrosinase)-based remote electrochemical biosensor for monitoring phenolic compounds,” Analyst, vol. 127, no. 2, pp. 258–261, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Haghighi, A. Rahmati-Panah, S. Shleev, and L. Gorton, “Carbon ceramic electrodes modified with laccase from Trametes hirsuta: fabrication, characterization and their use for phenolic compounds detection,” Electroanalysis, vol. 19, no. 9, pp. 907–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. S. Freire, N. Durán, and L. T. Kubota, “Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds,” Talanta, vol. 54, no. 4, pp. 681–686, 2001. View at Publisher · View at Google Scholar · View at Scopus