About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 526149, 6 pages
http://dx.doi.org/10.1155/2014/526149
Research Article

Surface Wettability of Oxygen Plasma Treated Porous Silicon

1Heavy Oil State Laboratory and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
2College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Received 29 August 2013; Accepted 10 October 2013; Published 16 January 2014

Academic Editor: Marinella Striccoli

Copyright © 2014 Lei Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Materials Science and Engineering R: Reports, vol. 39, no. 4, pp. 93–141, 2002. View at Scopus
  2. E. J. Anglin, L. Cheng, W. R. Freeman, and M. J. Sailor, “Porous silicon in drug delivery devices and materials,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1266–1277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Latterich and J. Corbeil, “Label-free detection of biomolecular interactions in real time with a nano-porous silicon-based detection method,” Proteome Science, vol. 6, article 31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials, vol. 30, no. 1, pp. 26–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Massad-Ivanir, G. Shtenberg, A. Tzur, M. A. Krepker, and E. Segal, “Engineering nanostructured porous SiO2 surfaces for bacteria detection via “Direct Cell Capture”,” Analytical Chemistry, vol. 83, no. 9, pp. 3282–3289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Low, K. A. Williams, L. T. Canham, and N. H. Voelcker, “Evaluation of mammalian cell adhesion on surface-modified porous silicon,” Biomaterials, vol. 27, no. 26, pp. 4538–4546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L. M. Bonanno and E. Segal, “Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery,” Nanomedicine, vol. 6, no. 10, pp. 1755–1770, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity,” Advanced Materials, vol. 18, no. 11, pp. 1393–1396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. P. Dowling, I. S. Miller, M. Ardhaoui, and W. M. Gallagher, “Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene,” Journal of Biomaterials Applications, vol. 26, no. 3, pp. 327–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Dong, Z. Yao, T. Yang, L. Jiang, and C. Shen, “Control of superhydrophilic and superhydrophobic graphene interface,” Scientific Reports, vol. 3, article 1733, 2013. View at Publisher · View at Google Scholar
  11. A. Ressine, D. Finnskog, G. Marko-Varga, and T. Laurell, “Superhydrophobic properties of nanostructured-microstructured porous silicon for improved surface-based bioanalysis,” Nanobiotechnology, vol. 4, no. 1–4, pp. 18–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Pace, P. Gonzalez, J.-M. Devoisselle, P.-E. Milhiet, D. Brunel, and F. Cunin, “Grafting of monoglyceride molecules for the design of hydrophilic and stable porous silicon surfaces,” New Journal of Chemistry, vol. 34, no. 1, pp. 29–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Fernández, M. Sánchez, F. J. Carmona et al., “Analysis of the grafting process of PVP on a silicon surface by AFM and contact angle,” Langmuir, vol. 27, no. 18, pp. 11636–11649, 2011. View at Publisher · View at Google Scholar
  14. D. Dattilo, L. Armelao, G. Fois, G. Mistura, and M. Maggini, “Wetting properties of flat and porous silicon surfaces coated with a spiropyran,” Langmuir, vol. 23, no. 26, pp. 12945–12950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Dattilo, L. Armelao, M. Maggini, G. Fois, and G. Mistura, “Wetting behavior of porous silicon surfaces functionalized with a fulleropyrrolidine,” Langmuir, vol. 22, no. 21, pp. 8764–8769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Wang and N. Koratkar, “Electrically controlled wetting and dewetting transition on silicon micro-pillar arrays,” Advanced Science Letters, vol. 1, no. 2, pp. 222–225, 2008. View at Publisher · View at Google Scholar
  17. B. A. Langowski and K. E. Uhrich, “Oxygen plasma-treatment effects on Si transfer,” Langmuir, vol. 21, no. 14, pp. 6366–6372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S.-W. Choi, W.-B. Choi, Y.-H. Lee, B.-K. Ju, M.-Y. Sung, and B.-H. Kim, “The analysis of oxygen plasma pretreatment for improving anodic bonding,” Journal of the Electrochemical Society, vol. 149, no. 1, pp. G8–G11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Jiang, Z. Li, L. Yang et al., “Effect of oxygen plasma on surface wettability of porous silicon,” China Surface Engineering, vol. 26, no. 5, pp. 43–48, 2013.
  20. S. B. Habib, E. Gonzalez, and R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” Journal of Vacuum Science and Technology A, vol. 28, no. 3, pp. 476–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosensors and Bioelectronics, vol. 23, no. 5, pp. 741–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Naveas, V. T. Costa, D. Gallach et al., “Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin,” Science and Technology of Advanced Materials, vol. 13, no. 4, Article ID 045009, 2012. View at Publisher · View at Google Scholar
  23. M. J. Sailor, “Fundamentals of porous silicon preparation,” in Porous Silicon in Practice, pp. 1–42, Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
  24. Z. W. A, “Relation of the equilibrium contact angle to liquid and solid constitution,” in Contact Angle, Wettability, and Adhesion, pp. 1–51, American Chemical Society, 1964.
  25. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, UK, 2nd edition, 1992.
  26. E. Gonzalez II, M. D. Barankin, P. C. Guschl, and R. F. Hicks, “Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate,” Langmuir, vol. 24, no. 21, pp. 12636–12643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Suni, K. Henttinen, I. Suni, and J. Mäkinen, “Effects of plasma activation on hydrophilic bonding of Si and SiO2,” Journal of the Electrochemical Society, vol. 149, no. 6, pp. G348–G351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Grabbe, T. A. Michalske, and W. L. Smith, “Strained siloxane rings on the surface on silica. Their reaction with organosiloxanes, organosilanes, and water,” Journal of Physical Chemistry, vol. 99, no. 13, pp. 4648–4654, 1995. View at Scopus
  29. Y. J. Chabal, Fundamental Aspects of Silicon Oxidation, Springer, Berlin, Germany, 2001.
  30. R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” Journal of Vacuum Science & Technology B, vol. 10, pp. 2133–2147, 1992.
  31. J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” Journal of Vacuum Science and Technology B, vol. 23, no. 6, pp. 2319–2329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Malek and M.-O. Coppens, “Knudsen self- and Fickian diffusion in rough nanoporous media,” Journal of Chemical Physics, vol. 119, no. 5, pp. 2801–2811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Hosticka, P. M. Norris, J. S. Brenizer, and C. E. Daitch, “Gas flow through aerogels,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 293–297, 1998. View at Scopus
  34. J. S. Andrade Jr., U. M. S. Costa, M. P. Almeida, H. A. Makse, and H. E. Stanley, “Inertial effects on fluid flow through disordered porous media,” Physical Review Letters, vol. 82, no. 26, pp. 5249–5252, 1999. View at Scopus