About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 529629, 6 pages
http://dx.doi.org/10.1155/2014/529629
Research Article

ZnTe Semiconductor-Polymer Gel Composited Electrolyte for Conversion of Solar Energy

1Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
3Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Received 22 May 2013; Accepted 17 September 2013; Published 8 January 2014

Academic Editor: Christopher L. Kitchens

Copyright © 2014 Wonchai Promnopas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs) was synthesized from 1 : 1 molar ratio of Zn : Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm−1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the , , fill factor (ff), and efficiency (η) by increasing the wt% of ZnTe-GPE (gel polymer electrolyte) to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe.