About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 763736, 7 pages
http://dx.doi.org/10.1155/2014/763736
Research Article

Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method

Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Received 14 June 2013; Revised 14 October 2013; Accepted 15 October 2013; Published 2 January 2014

Academic Editor: Santanu K. Maiti

Copyright © 2014 Suk Fun Chin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Y. Kim, J. H. Lee, J. Y. Kim, W. J. Lim, and S. T. Lim, “Characterization of nanoparticles prepared by acid hydrolysis of various starches,” Starch, vol. 64, no. 5, pp. 367–373, 2012. View at Publisher · View at Google Scholar
  2. S. F. Chin, S. C. Pang, and S. H. Tay, “Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method,” Carbohydrate Polymers, vol. 86, no. 4, pp. 1817–1819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Geng, P. R. Chang, J. Yu, and X. Ma, “The fabrication and the properties of pretreated corn starch laurate,” Carbohydrate Polymers, vol. 80, no. 2, pp. 361–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Rodrigues and M. Emeje, “Recent applications of starch derivatives in nanodrug delivery,” Carbohydrate Polymers, vol. 87, no. 2, pp. 987–994, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Han, G. Borjihan, R. Bai, X. Chen, and X. Jing, “Synthesis and characterization of starch piperinic ester and its self-assembly of nanospheres,” Journal of Applied Polymer Science, vol. 108, no. 1, pp. 523–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. K. Simi and T. Emilia Abraham, “Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery,” Bioprocess and Biosystems Engineering, vol. 30, no. 3, pp. 173–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Yu, S. Xiao, C. Tong, L. Chen, and X. Liu, “Dialdehyde starch nanoparticles: preparation and application in drug carrier,” Chinese Science Bulletin, vol. 52, no. 21, pp. 2913–2918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Y. Kim and S. T. Lim, “Preparation of nano-sized starch particles by complex formation with n-butanol,” Carbohydrate Polymers, vol. 76, no. 1, pp. 110–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Horchani, M. Chaâbouni, Y. Gargouri, and A. Sayari, “Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology,” Carbohydrate Polymers, vol. 79, no. 2, pp. 466–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Gong, L. Q. Wang, and K. Tu, “In situ polymerization of starch with lactic acid in aqueous solution and the microstructure characterization,” Carbohydrate Polymers, vol. 64, no. 4, pp. 501–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Shi, D. Li, L. J. Wang, B. Z. Li, and B. Adhikari, “Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability,” Carbohydrate Polymers, vol. 83, no. 4, pp. 1604–1610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. H. Tay, S. C. Pang, and S. F. Chin, “Facile synthesis of starch-maleate monoesters from native sago starch,” Carbohydrate Polymers, vol. 88, no. 4, pp. 1195–1200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Gavory, A. Durand, J. L. Six, C. Nouvel, E. Marie, and M. Leonard, “Polysaccharide-covered nanoparticles prepared by nanoprecipitation,” Carbohydrate Polymers, vol. 84, no. 1, pp. 133–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. Dai, C. J. Chang, H. Y. Chi, H. T. Chien, W. F. Su, and W. Y. Chiu, “Emulsion synthesis of nanoparticles containing PEDOT using conducting polymeric surfactant: synergy for colloid stability and intercalation doping,” Journal of Polymer Science A, vol. 46, no. 7, pp. 2536–2548, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Y. Koo, S. T. Chang, W. S. Choi, J. H. Park, D. Y. Kim, and O. D. Velev, “Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules,” Chemistry of Materials, vol. 18, no. 14, pp. 3308–3313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Tojo, M. de Dios, and F. Barroso, “Surfactant effects on microemulsion-based nanoparticle synthesis,” Materials, vol. 4, no. 1, pp. 55–72, 2011.
  17. M. Ethayaraja, K. Dutta, D. Muthukumaran, and R. Bandyopadhyaya, “Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation,” Langmuir, vol. 23, no. 6, pp. 3418–3423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. López-Quintela, “Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control,” Current Opinion in Colloid and Interface Science, vol. 8, no. 2, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Chingunpituk, “Nanosuspension technology for drug delivery,” Walailak Journal Science and Technology, vol. 4, no. 2, pp. 139–153, 2007.
  20. S. P. Moulik, A. K. Rakshit, and I. Capek, “Microemulsions as templates for nanomaterials,” in Microemulsions: Background, New Concepts, Applications, Perspectives, C. Stubenrauch, Ed., p. 180, John Wiley & Sons, Chichester, UK, 2009.
  21. J. P. Rao and K. E. Geckeler, “Polymer nanoparticles: preparation techniques and size-control parameters,” Progress in Polymer Science, vol. 36, no. 7, pp. 887–913, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Malik, M. Y. Wani, and M. A. Hashim, “Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials,” Arabian Journal of Chemistry, vol. 5, no. 4, pp. 397–417, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Talegaonkar, A. Azeem, F. J. Ahmad, R. K. Khar, S. A. Pathan, and Z. I. Khan, “Microemulsions: a novel approach to enhanced drug delivery,” Recent Patents on Drug Delivery and Formulation, vol. 2, no. 3, pp. 238–257, 2008. View at Scopus
  24. F. Wang, B. Fang, Z. Zhang, S. Zhang, and Y. Chen, “The effect of alkanol chain on the interfacial composition and thermodynamic properties of diesel oil microemulsion,” Fuel, vol. 87, no. 12, pp. 2517–2522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Gannu, C. R. Palem, V. V. Yamsani, S. K. Yamsani, and M. R. Yamsani, “Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: formulation optimization, ex vivo and in vivo characterization,” International Journal of Pharmaceutics, vol. 388, no. 1-2, pp. 231–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Nagarajan and E. Ruckenstein, “Molecular theory of microemulsions,” Langmuir, vol. 16, no. 16, pp. 6400–6415, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Dave and D. Madamwar, “Candida rugosa lipase immobilized in Triton-X100 microemulsion based organogels (MBGs) for ester synthesis,” Process Biochemistry, vol. 43, no. 1, pp. 70–75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. B. Cardoso, J. L. Putaux, D. Samios, and N. P. da Silveira, “Influence of alkali concentration on the deproteinization and/or gelatinization of rice starch,” Carbohydrate Polymers, vol. 70, no. 2, pp. 160–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Neelam, S. Vijay, and S. Lalit, “Various techniques for the modification of starch and the applications of its derivatives,” International Research Journal of Pharmacy, vol. 3, no. 5, pp. 25–31, 2012.
  30. J. A. Han and S. T. Lim, “Structural changes in corn starches during alkaline dissolution by vortexing,” Carbohydrate Polymers, vol. 55, no. 2, pp. 193–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Rachtanapun, P. Simasatitkul, W. Chaiwan, and Y. Watthanaworasakun, “Effect of sodium hydroxide concentration on properties of carboxymethyl rice starch,” International Food Research Journal, vol. 19, no. 3, pp. 923–931, 2012.
  32. J. Sun, S. Zhou, P. Hou et al., “Synthesis and characterization of biocompatible Fe3O4 nanoparticles,” Journal of Biomedical Materials Research A, vol. 80, no. 2, pp. 333–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. U. S. Khan, N. S. Khattak, A. Rahman, and F. Khan, “Optimal method for preparation of magnetite nanoparticles,” Journal of the Chemical Society of Pakistan, vol. 33, no. 5, pp. 628–633, 2011. View at Scopus
  34. R. Pal, “Rheology of simple and multiple emulsions,” Current Opinion in Colloid and Interface Science, vol. 16, no. 1, pp. 41–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Sun, G. Guo, Z. Wang, and H. Guo, “Synthesis of single-crystal HAP nanorods,” Ceramics International, vol. 32, no. 8, pp. 951–954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, and J. R. Leis, “Microemulsion dynamics and reactions in microemulsions,” Current Opinion in Colloid and Interface Science, vol. 9, no. 3-4, pp. 264–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Hickey, S. A. Hagan, E. Kudryashov, and V. Buckin, “Analysis of phase diagram and microstructural transitions in an ethyl oleate/water/Tween 80/Span 20 microemulsion system using high-resolution ultrasonic spectroscopy,” International Journal of Pharmaceutics, vol. 388, no. 1-2, pp. 213–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Lawrence and G. D. Rees, “Microemulsion-based media as novel drug delivery systems,” Advanced Drug Delivery Reviews, vol. 45, no. 1, pp. 89–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Salager, R. Anton, A. Forgiarini, and L. Marquez, “Formulation of microemulsions,” in Microemulsions: Background, New Concepts, Applications, Perspectives, C. Stubenrauch, Ed., pp. 105–106, John Wiley & Sons, Chichester, UK, 2009.
  40. V. B. Patravale and A. A. Date, “Microemulsions: pharmaceutical applications,” in Microemulsions: Background, New Concepts, Applications, Perspectives, C. Stubenrauch, Ed., pp. 259–266, John Wiley & Sons, 2009.
  41. N. Savco, The role of inverse nonionic microemulsion in the synthesis of SiO2 nanoparticles [Ph.D. thesis], University of Trieste, Trieste, Italy, 2010.
  42. S. Schubert, J. T. Delaney Jr., and U. S. Schubert, “Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid),” Soft Matter, vol. 7, no. 5, pp. 1581–1588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Mohsen-Nia, H. Amiri, and B. Jazi, “Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study,” Journal of Solution Chemistry, vol. 39, no. 5, pp. 701–708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Li, Y. Tan, Z. Ning, S. Sun, Y. Gao, and P. Wang, “Design and fabrication of fluorescein-labeled starch-based nanospheres,” Carbohydrate Polymers, vol. 86, no. 1, pp. 291–295, 2011. View at Publisher · View at Google Scholar · View at Scopus