About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 907435, 9 pages
http://dx.doi.org/10.1155/2014/907435
Research Article

The Activity of [60]Fullerene Derivatives Bearing Amine and Carboxylic Solubilizing Groups against Escherichia coli: A Comparative Study

1Department of Microbiology, Orenburg State University, Pobedy Avenue 13, Orenburg 460018, Russia
2All-Russia Research Institute of Beef Cattle Breeding, 9 Yanvarya Street 29, Orenburg 460000, Russia
3Institute of Cellular and Intracellular Symbiosis, RAS, Pionerskaya Street 11, Orenburg 460000, Russia
4Institute for Problems of Chemical Physics of RAS, Academician Semenov Avenue 1, Chernogolovka, Moscow Region 142432, Russia

Received 5 September 2013; Accepted 13 November 2013; Published 15 January 2014

Academic Editor: Myoung-Woon Moon

Copyright © 2014 Dmitry G. Deryabin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Hurt, M. Monthioux, and A. Kane, “Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue,” Carbon, vol. 44, no. 6, pp. 1028–1033, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Bosi, T. D. Ros, G. Spalluto, and M. Prato, “Fullerene derivatives: an attractive tool for biological applications,” European Journal of Medicinal Chemistry, vol. 38, no. 11-12, pp. 913–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Brayner, “The toxicological impact of nanoparticles,” Nano Today, vol. 3, no. 1-2, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. Mauter and M. Elimelech, “Environmental applications of carbon-based nanomaterials,” Environmental Science and Technology, vol. 42, no. 16, pp. 5843–5859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, “A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks,” Critical Reviews in Toxicology, vol. 36, no. 3, pp. 189–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Kolosnjaj-Tabi, H. Szwarc, and F. Moussa, “In vivo toxicity studies of pristine carbon nanotubes: a review,” in The Delivery of Nanoparticles, A. A. Hashim, Ed., chapter 2, pp. 37–58, InTech, Vienna, Austeria, 2012. View at Publisher · View at Google Scholar
  7. S. Nath, H. Pal, A. V. Sapre, and J. P. Mittal, “Solvatochromism. Aggregation and photochemical properties of fullerenes, C60 and C70, in solution,” Journal of Photoscience, vol. 10, no. 1, p. 105, 2003.
  8. F. Langa and J. -F. Nierengarten, Fullerenes: Principles and Applications, Nanoscience & Nanotechnology, Royal Society of Chemistry, Cambridge, UK, 2007.
  9. P. A. Troshin, O. A. Troshina, R. N. Lyubovskaya, and V. F. Razumov, “Functional derivatives of fullerenes: synthesis and applications in the fields of organic electronics and biomedicine,” Ivanovo: IvSU, 2010.
  10. S. C. Chueh, M. K. Lai, M. S. Lee, L. Y. Chiang, T. I. Ho, and S. C. Chen, “Decrease of free radical level in organ perfusate by a novel water-soluble carbon-sixty, hexa(sulfobutyl)fullerenes,” Transplantation Proceedings, vol. 31, no. 5, pp. 1976–1977, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Maeda-Mamiya, E. Noiri, H. Isobe et al., “In vivo gene delivery by cationic tetraamino fullerene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5339–5344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. L. L. Dugan, D. M. Turetsky, C. Du et al., “Carboxyfullerenes as neuroprotective agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 17, pp. 9434–9439, 1997. View at Scopus
  13. Y. Tabata, Y. Murakami, and Y. Ikada, “Antitumor effect of poly(ethylene glycol)-modified fullerene,” Fullerene Science and Technology, vol. 5, no. 5, pp. 989–1007, 1997. View at Scopus
  14. F. Kasermann and C. Kempf, “Photodynamic inactivation of enveloped viruses by buckminsterfullerene,” Antiviral Research, vol. 34, no. 1, pp. 65–70, 1997.
  15. D. Y. Lyon, J. D. Fortner, C. M. Sayes, V. L. Colvin, and J. B. Hughes, “Bacterial cell association and antimicrobial activity of a C60 water suspension,” Environmental Toxicology and Chemistry, vol. 24, no. 11, pp. 2757–2762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Kamat, T. P. A. Devasagayam, K. I. Priyadarsini, and H. Mohan, “Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications,” Toxicology, vol. 155, no. 1–3, pp. 55–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Mashino, N. Usui, K. Okuda, T. Hirota, and M. Mochizuki, “Respiratory chain inhibition by fullerene derivatives: hydrogen peroxide production caused by fullerene derivatives and a respiratory chain system,” Bioorganic and Medicinal Chemistry, vol. 11, no. 7, pp. 1433–1438, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Sharma, L. Y. Chiang, and M. R. Hamblin, “Photodynamic therapy with fullerenes in vivo: reality or a dream?” Nanomedicine, vol. 6, no. 10, pp. 1813–1825, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Mashino, D. Nishikawa, K. Takahashi et al., “Antibacterial and antiproliferative activity of cationic fullerene derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 13, no. 24, pp. 4395–4397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Tsao, P. P. Kanakamma, T.-Y. Luh, C.-K. Chou, and H.-Y. Lei, “Inhibition of Escherichia coli-induced meningitis by carboxyfullerence,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 9, pp. 2273–2277, 1999. View at Scopus
  21. A. A. Yurkova, E. A. Khakina, S. I. Troyanov et al., “Arbuzov chemistry with chlorofullerene C60Cl6: a powerful method for selective synthesis of highly functionalized [60]fullerene derivatives,” Chemical Communications, vol. 48, no. 71, pp. 8916–8918, 2012. View at Publisher · View at Google Scholar
  22. E. A. Khakina, A. A. Yurkova, A. A. Peregudov et al., “Highly selective reactions of C60Cl6 with thiols for the synthesis of functionalized [60]fullerene derivatives,” Chemical Communications, vol. 48, no. 57, pp. 7158–7160, 2012. View at Publisher · View at Google Scholar
  23. A. B. Kornev, E. A. Khakina, S. I. Troyanov et al., “Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor,” Chemical Communications, vol. 48, no. 44, pp. 5461–5463, 2012. View at Publisher · View at Google Scholar
  24. A. B. Kornev, A. S. Peregudov, V. M. Martynenko, J. Balzarini, B. Hoorelbeke, and P. A. Troshin, “Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene,” Chemical Communications, vol. 47, no. 29, pp. 8298–8300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. O. A. Troshina, P. A. Troshin, A. S. Peregudov, J. Kozlovskiy, and R. N. Balzarini, “Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives,” Chemistry, vol. 12, no. 21, pp. 5569–5577, 2006. View at Publisher · View at Google Scholar
  26. O. A. Troshina, P. A. Troshin, A. S. Peregudov, V. I. Kozlovskiy, J. Balzarini, and R. N. Lyubovskaya, “Chlorofullerene C60Cl6: a precursor for straightforward preparation of highly water-soluble polycarboxylic fullerene derivatives active against HIV,” Organic and Biomolecular Chemistry, vol. 5, no. 17, pp. 2783–2791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, “Antibacterial effects of carbon nanotubes: size does matter!,” Langmuir, vol. 24, no. 13, pp. 6409–6413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Bouchard, X. Ma, and C. Isaacson, “Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives,” Environmental Science & Technology, vol. 43, no. 17, pp. 6597–6603, 2009. View at Publisher · View at Google Scholar
  29. G. Wang, G. Zhao, and L. Yan, “Relationship between toxicity and molecular volume of dioxins, organic phosphorous compounds and n-alkanols,” Chinese Science Bulletin, vol. 49, no. 14, pp. 1437–1441, 2004.
  30. S. S. Gayathri and A. Patnaik, “Aggregation of a C60-didodecyloxybenzene dyad: structure, dynamics, and mechanism of vesicle growth,” Langmuir, vol. 23, no. 9, pp. 4800–4808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Kanbur and Z. Küçükyavuz, “Synthesis and characterization of surface modified fullerene,” Fullerenes, Nanotubes and Carbon Nanostructures, vol. 20, no. 2, pp. 119–126. View at Publisher · View at Google Scholar
  32. X. Ma and D. Bouchard, “Formation of aqueous suspensions of fullerenes,” Environmental Science & Technology, vol. 43, no. 2, pp. 330–336, 2009. View at Publisher · View at Google Scholar
  33. E. Yifeng, L. Bai, L. Fan, M. Han, X. Zhang, and S. Yang, “Electrochemically generated fluorescent fullerene[60] nanoparticles as a new and viable bioimaging platform,” Journal of Materials Chemistry, vol. 21, pp. 819–823, 2011. View at Publisher · View at Google Scholar
  34. Y. Matsuo, K. Tahara, K. Morita, K. Matsuo, and E. Nakamura, “Regioselective eightfold and tenfold additions of a pyridine-modified organocopper reagent to [60]fullerene,” Angewandte Chemie, vol. 46, no. 16, pp. 2844–2847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Y. Lyon and P. J. Alvarez, “Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation,” Environmental Science & Technology, vol. 42, no. 21, pp. 8127–8132, 2008. View at Publisher · View at Google Scholar
  36. M. HuiLi and X. J. Liang, “Fullerenes as unique nanopharmaceuticals for disease treatment,” Science China Chemistry, vol. 53, no. 11, pp. 2233–2240, 2010. View at Publisher · View at Google Scholar
  37. S. Liu, A. K. Ng, R. Xu et al., “Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy,” Nanoscale, vol. 2, no. 12, pp. 2744–2750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Schwegmann, A. J. Feitza, and F. H. Frimmela, “Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli,” Journal of Colloid and Interface Science, vol. 347, no. 1, pp. 43–48, 2010. View at Publisher · View at Google Scholar
  39. N. Guzelsu, C. Wienstien, and S. P. Kotha, “A new streaming potential chamber for zeta potential measurements of particulates,” Review of Scientific Instruments, vol. 81, no. 1, Article ID 015106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. J. Tang, J. M. Ashcroft, D. Chen et al., “Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism,” Nano Letters, vol. 7, no. 3, pp. 754–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. J. Johnston, G. R. Hutchison, F. M. Christensen, K. Aschberger, and V. Stone, “The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity,” Toxicological Sciences, vol. 114, no. 2, pp. 162–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Rancan, S. Rosan, F. Boehm et al., “Cytotoxicity and photocytotoxicity of a dendritic C60 mono-adduct and a malonic acid C60 tris-adduct on Jurkat cells,” Journal of Photochemistry and Photobiology B, vol. 67, no. 3, pp. 157–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Wong-Ekkabut, S. Baoukina, W. Triampo, I.-M. Tang, D. P. Tieleman, and L. Monticelli, “Computer simulation study of fullerene translocation through lipid membranes,” Nature Nanotechnology, vol. 3, no. 6, pp. 363–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Nakanishi, S. Fukuzumi, T. Konishi et al., “Fullerenes for the new millennium,” in Proceedings of the International Symposium on Fullerenes, Nanotubes, and Carbon Nanoclusters, P. V. Kamat, D. M. Guldi, and K. M. Kadish, Eds., vol. 11, The Electrochemical Society, Pennington, NJ, USA, 2001.
  45. M. Carini, L. Djordjevic, and T. D. Ros, “Fullerenes in biology and medicine,” in Handbook of Carbon Nano Materials, vol. 3, pp. 1–48, World Scientific Publishing, 2012. View at Publisher · View at Google Scholar
  46. A. Aquino, J. Chan, K. Giolma, and M. Loh, “The effect of a fullerene water suspension on the growth, cell viability, and membrane integrity of Escherichia coli B23,” Journal of Eexperimental Microbiology & Immunology, vol. 14, pp. 13–20, 2010.
  47. T. Mashino, K. Okuda, T. Hirota, M. Hirobe, T. Nagano, and M. Mochizuki, “Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism,” Bioorganic and Medicinal Chemistry Letters, vol. 9, no. 20, pp. 2959–2962, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. G. P. Tegos, T. N. Demidova, D. Arcila-Lopez et al., “Cationic fullerenes are effective and selective antimicrobial photosensitizers,” Chemistry and Biology, vol. 12, no. 10, pp. 1127–1135, 2005. View at Publisher · View at Google Scholar · View at Scopus