About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 974285, 6 pages
http://dx.doi.org/10.1155/2014/974285
Research Article

3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries

1School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

Received 13 December 2013; Accepted 23 December 2013; Published 12 January 2014

Academic Editor: Zheng-Hong Huang

Copyright © 2014 Xiaoyu Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Yang, X. Feng, S. Ivanovici, and K. Müllen, “Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage,” Angewandte Chemie, vol. 49, no. 45, pp. 8408–8411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Luo, B. Wang, X. Li, Y. Jia, M. Liang, and L. Zhi, “Graphene-confined Sn nanosheets with enhanced lithium storage capability,” Advanced Materials, vol. 24, no. 26, pp. 3538–3543, 2012. View at Publisher · View at Google Scholar
  3. C.-M. Park and K.-J. Jeon, “Porous structured SnSb/C nanocomposites for Li-ion battery anodes,” Chemical Communications, vol. 47, no. 7, pp. 2122–2124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H.-C. Shin and M. L. Liu, “Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries,” Advanced Functional Materials, vol. 15, no. 4, pp. 582–586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Lv, Y. Tao, W. Ni et al., “One-pot self-assembly of three-dimensional graphene macroassemblies with porous core and layered shell,” Journal of Materials Chemistry, vol. 21, no. 33, pp. 12352–12357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Liu, S. Z. Qiao, J. S. Chen, X. W. Lou, X. Xing, and G. Q. Lu, “Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries,” Chemical Communications, vol. 47, no. 47, pp. 12578–12591, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Yao, M. T. McDowell, I. Ryu et al., “Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life,” Nano Letters, vol. 11, no. 7, pp. 2949–2954, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. W.-M. Zhang, J.-S. Hu, Y.-G. Guo et al., “Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries,” Advanced Materials, vol. 20, no. 6, pp. 1160–1165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y.-S. Lin, J.-G. Duh, and M.-H. Hung, “Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery,” The Journal of Physical Chemistry C, vol. 114, no. 30, pp. 13136–13141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Liang, X. Zhu, P. Lian, W. Yang, and H. Wang, “Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries,” Journal of Solid State Chemistry, vol. 184, no. 6, pp. 1400–1404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Qiu, K. Yan, and S. Yang, “Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries,” Chemical Communications, vol. 46, no. 44, pp. 8359–8361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Deng and J. Y. Lee, “Reversible storage of lithium in a rambutan-like tin-carbon electrode,” Angewandte Chemie, vol. 48, no. 9, pp. 1660–1663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Lv, F. Sun, D.-M. Tang et al., “A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance,” Journal of Materials Chemistry, vol. 21, no. 25, pp. 9014–9019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wang, M. Wu, Z. Jiao, and J. Y. Lee, “Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage,” Chemistry of Materials, vol. 21, no. 14, pp. 3210–3215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Lv, D.-M. Tang, Y.-B. He et al., “Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage,” ACS Nano, vol. 3, no. 11, pp. 3730–3736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F.-Y. Su, C. You, Y.-B. He et al., “Flexible and planar graphene conductive additives for lithium-ion batteries,” Journal of Materials Chemistry, vol. 20, no. 43, pp. 9644–9650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. F.-Y. Su, Y.-B. He, B. Li et al., “Could graphene construct an effective conducting network in a high-power lithium ion battery?” Nano Energy, vol. 1, no. 3, pp. 429–439, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Zhou, D.-W. Wang, F. Li et al., “Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries,” Chemistry of Materials, vol. 22, no. 18, pp. 5306–5313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Chen, P. Chen, M. Wu, D. Pan, and Y. Wang, “Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries,” Electrochemistry Communications, vol. 12, no. 10, pp. 1302–1306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Z.-S. Wu, W. Ren, L. Wen et al., “Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance,” ACS Nano, vol. 4, no. 6, pp. 3187–3194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Wang, B. Wang, X. Wang et al., “Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries,” Journal of Materials Chemistry, vol. 19, no. 44, pp. 8378–8384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Stojković, N. Cvjetićanin, M. Mitrić, and S. Mentus, “Electrochemical properties of nanostructured Li1.2V3O8 in aqueous LiNO3 solution,” Electrochimica Acta, vol. 56, no. 18, pp. 6469–6473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Ji, Z. Tan, T. Kuykendall et al., “Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage,” Energy & Environmental Science, vol. 4, no. 9, pp. 3611–3616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, “Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity,” Advanced Materials, vol. 18, no. 17, pp. 2325–2329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Wang, G. Yao, M. Xu, M. Zhao, Z. Sun, and X. Song, “Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries,” Journal of Alloys and Compounds, vol. 509, no. 20, pp. 5969–5973, 2011. View at Publisher · View at Google Scholar · View at Scopus