About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2014 (2014), Article ID 989672, 6 pages
http://dx.doi.org/10.1155/2014/989672
Research Article

Thickness-Dependent Strain Effect on the Deformation of the Graphene-Encapsulated Au Nanoparticles

1Institute of Microelectronics and Information Technology, Wuhan University, Wuhan, Hubei 430072, China
2Laboratory of Nanomaterials and Sensors, School of Physics, Electronics and Communication, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

Received 29 November 2013; Accepted 23 December 2013; Published 9 January 2014

Academic Editor: Wen Lei

Copyright © 2014 Shuangli Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Narayanan and M. A. El-Sayed, “Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability,” Journal of Physical Chemistry B, vol. 109, no. 26, pp. 12663–12676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine, vol. 1, no. 2, pp. 219–228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. K. Jain, I. H. ElSayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today, vol. 2, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Hayashi, S. Hirono, M. Tomita, and S. Umemura, “Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon,” Nature, vol. 381, no. 6585, pp. 772–774, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Caudillo, X. Gao, R. Escudero, M. José-Yacaman, and J. B. Goodenough, “Ferromagnetic behavior of carbon nanospheres encapsulating silver nanoparticles,” Physical Review B, vol. 74, no. 21, Article ID 214418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. I. Bolotin, K. J. Sikes, Z. Jiang et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, no. 9-10, pp. 351–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Yang, X. Feng, S. Ivanovici, and K. Müllen, “Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage,” Angewandte Chemie—International Edition, vol. 49, no. 45, pp. 8408–8411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zeng, S. Sun, J. Li, Z. L. Wang, and J. P. Liu, “Tailoring magnetic properties of core/shell nanoparticles,” Applied Physics Letters, vol. 85, no. 5, pp. 792–794, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Accounts of Chemical Research, vol. 43, no. 2, pp. 190–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. V. Krasheninnikov and F. Banhart, “Engineering of nanostructured carbon materials with electron or ion beams,” Nature Materials, vol. 6, no. 10, pp. 723–733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Sun, A. V. Krasheninnikov, T. Ahlgren, K. Nordlund, and F. Banhart, “Plastic deformation of single nanometer-sized crystals,” Physical Review Letters, vol. 101, no. 15, Article ID 156101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The Finite Element Method for Engineers, John Wiley & Sons, New York, NY, USA, 2001.
  14. J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” Journal of Applied Physics, vol. 106, Article ID 053508, 2009. View at Publisher · View at Google Scholar
  15. B. Liu, Y. Huang, H. Jiang, S. Qu, and K. C. Hwang, “The atomic-scale finite element method,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 17-20, pp. 1849–1864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Hu, L. Onyebueke, and A. Abatan, “Characterizing and modeling mechanical properties of nanocomposites-review and evaluation,” Journal of Minerals & Materials Characterization & Engineering, vol. 9, no. 4, pp. 275–319, 2010.
  17. D. Barettin, S. Madsen, B. Lassen, and M. Willatzen, “Comparison of wurtzite atomistic and piezoelectric continuum strain models: implications for the electronic band structure,” Superlattices and Microstructures, vol. 47, no. 1, pp. 134–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Karamehmedovic, R. Schuh, V. Schmidt et al., “Comparison of numerical methods in near-field computation for metallic nanoparticles,” Optics Express, vol. 19, no. 9, pp. 8939–8953, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. L. Johnson, E. Snoeck, M. Ezcurdia et al., “Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles,” Nature Materials, vol. 7, no. 2, pp. 120–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. W. Shan, G. Adesso, A. Cabot et al., “Ultrahigh stress and strain in hierarchically structured hollow nanoparticles,” Nature Materials, vol. 7, no. 12, pp. 947–952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,” Physical Review Letters, vol. 79, no. 7, pp. 1297–1300, 1997. View at Scopus
  22. W. D. Callister Jr., Materials Science and Engineering, John Wiley & Sons, New York, NY, USA, 3rd edition, 1994.
  23. Y. Zhang and C. Pan, “Measurements of mechanical properties and number of layers of graphene from nano-indentation,” Diamond and Related Materials, vol. 24, pp. 1–5, 2012. View at Publisher · View at Google Scholar · View at Scopus