Journal of Nanomaterials
 Journal metrics
See full report
Acceptance rate16%
Submission to final decision138 days
Acceptance to publication53 days
CiteScore5.100
Journal Citation Indicator-
Impact Factor-

Differential Silica Nanoparticles Functionalized with Branched Poly(1-Vinyl-1,2,4-Triazole): Antibacterial, Antifungal, and Cytotoxic Qualities

Read the full article

 Journal profile

Journal of Nanomaterials publishes research on nanoscale and nanostructured materials with an emphasis on synthesis, processing, characterization, and the applications of nanomaterials.

 Editor spotlight

Chief Editor Stefano Bellucci is Professor of Theoretical Physics at the National Institute for Nuclear Physics in Frascati, Italy. His research interests include nanoscience and nanotechnology, nanocarbon-based composites, and the biomedical applications of nanomaterials.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Review Article

Review of the Design and Operation Criteria of a DC Submerged Arc Discharge Carbon Nanostructure Synthesis Installation

The submerged arc discharge (SAD) allows the production of high-quality carbon nanostructures. The SAD method uses simple and inexpensive equipment. However, the carbon nanostructures obtained contain contaminants that are difficult to remove. The study of the published articles shows that reporting similar operating parameters informs quite different results. Reducing the generation of pollutants requires optimization of the design and the operation of installations. Nevertheless, the study of the state-of-the-art indicates that this aspect has been underestimated, which is manifested in the absence of publications on this subject. On the other hand, the increase in the production scale causes new problems that are not manifested in small-volume productions that are carried out in a research laboratory. The present work aims to analyze the SAD installation design and operation criteria to reduce the presence of contaminants. This study indicated that the key elements of the design and the operation are the electrodes alignment, feeding and attachment mechanisms, the electrode micropositioning system, the synthesis reactor design, the sensitive parameters control, the data acquisition system, and the selection of the liquid medium. Herein, these elements are analyzed and the best strategies for their design and operation are exposed. Those aspects relevant to scaling up of production are emphasized.

Review Article

Review on Medical Applications of Manganese Oxide (Mn2+, Mn3+, and Mn4+) Magnetic Nanoparticles

Apart from our imagination, the nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nanoelectronics, environmental remediation, and medical healthcare. In the medical field, magnetic materials play vital roles such as magnetic resonance imaging (MRI), hyperthermia, and magnetic drug delivery. Among them, manganese oxide garnered great interest in biomedical applications due to its different oxidation states (Mn2+, Mn3+, and Mn4+). Manganese oxide nanostructures are widely explored for medical applications due to their availability, diverse morphologies, and tunable magnetic properties. In this review, cogent contributions of manganese oxides in medical applications are summarized. The crystalline structure and oxidation states of Mn oxides are highlighted. The synthesis approaches of Mn-based nanoparticles are outlined. The important medical applications of manganese-based nanoparticles like magnetic hyperthermia, MRI, and drug delivery are summarized. This review is conducted to cover the future impact of MnOx in diagnostic and therapeutic applications.

Research Article

The Study of Photocatalytic Degradation Kinetics and Mechanism of Malachite Green Dye on Ni–TiO2 Surface Modified with Polyaniline

Synthetic organic dyes are coloring agents used in various industries. Despite the fact that they offer exciting colors and long-lasting effects, certain organic dyes can have harmful impacts on human health and aquatic ecosystems. This study investigates the photocatalytic degradation of malachite green dye using Ni–TiO2 nanoparticles (NPs) and Ni–TiO2/PANI nanocomposites (NCs) in various reaction conditions. The surface and compositional change of synthesized photocatalysts were characterized by XRD, FTIR, AAS, and UV–vis spectrophotometer. Accordingly, the XRD results signify the crystal structure of photocatalysts found to be tetragonal anatase phase while the FT-IR spectra indicate the titanium has predominantly form a coordination compound upon reaction with nitrogen atom through weakening the bond strength between C═N, C═C, and C─N in the PANI. The UV–vis measurement shows that the energy bandgaps were decreased from 3.20 to 2.77 eV and 2.59 eV for Ni–TiO2 NPs and Ni–TiO2/PANI NCs, respectively. From AAS data, the authors confirmed that Ni metal has significantly existed in the aforementioned photocatalysts after the calcination process. The photocatalytic degradation of Ni–TiO2 NPs and Ni–TiO2/PANI NCs on the model dye has studied and their efficiency was 94.22% and 99.09%, respectively. The photocatalytic degradation follows pseudo-first order with 2.23 × 10−2 min−1 reaction rate at optimum conditions of pH 8.5, initial dye concentration of 0.2 g/L, catalyst load of 0.2 g/L, and irradiation time of 90 min. With this, the outstanding result recorded using Ni–TiO2/PANI NCs is ascribed to the smaller particle size as compared to Ni–TiO2 NPs, and it is found to be the promising photocatalyst for the removal of wastewater containing organic dyes.

Research Article

Computation of Structural Descriptors of Pyrene Cored Dendrimers through Quotient Graph Approach and Its Graph Entropy Measures

Dendrimers are highly defined hyperbranched artificial macromolecules, synthesised by convergent or divergent approach with specific applications in various fields. Dendrimers can be represented as graph models, from which a quantitative description can be drawn in relation with their structural properties. The distance-based and the degree-based descriptors have great importance and huge applications in structural chemistry. These indices together with entropy measures are found to be more effective and have found application in scientific fields. The idea of graph entropy is to characterise the complexity of graphs. The use of these graph invariants in quantitative structure property relationship and quantitative structure activity relationship studies has become of major interest in recent years. In this paper, the distance-based molecular descriptors of pyrene cored dendrimers are studied applying the technique of converting original graph into quotient graphs using -classes. It is to be noted that, since the pyrene cored dendrimer, is not a partial cube, usual cut method is not applicable. Further, various degree-based descriptors and their corresponding graph entropies of the pyrene cored dendrimers are also studied. Based on the obtained results, a comparative analysis as well as a regression analysis was carried out.

Review Article

Sol–Gel Synthesis of Nanostructured Mesoporous Silica Powder and Thin Films

Mesoporous materials are special nanoporous materials containing well-defined mesochannels with a pore diameter between 2 and 50 nm. The high surface area, ordered structure, tunable pore size, and easiness of functionalization have made mesoporous silica powder and thin films interesting materials for a wide range of applications including drug delivery, absorption, separation, catalysis, energy conversion, and storage. The sol–gel process has emerged as a promising technique for the synthesis of nanostructured mesoporous silica materials as it provides the advantages of low-temperature processing and easy control of the synthesis parameters. Although it offers several advantages over other synthesis techniques, it also has the drawbacks of high sensitivity to processing conditions. Hence, this review paper aims to give critical insights into the sol–gel process, the chemistry of sol–gel silica, the formation mechanism of mesoporosity, and the effects of the reaction parameters. A good understanding of these phenomena is essential to better control and optimize the properties of the final material for specific needs and applications. Additionally, this review paper discusses the different methods applied to the synthesis of nanostructured ordered mesoporous thin film silica, including the Electrochemically Assisted Self-Assembly method of synthesis. The EASA method is a novel and promising technique for the synthesis of well-ordered and vertically aligned pore channels of mesoporous thin films as it is required for mass transport applications. Moreover, the effects of sol composition, pH, applied potential, and deposition time on the final thickness of the thin film are elaborated on in detail. Furthermore, this comprehensive review highlights the potential and opportunities for future research and development in the area to further advance and use its full potential advantages.

Research Article

Synthesis and Photocatalytic Activity of High-Quality Lead(II) Sulfide Nanoparticles from Lead(II) Thiosemicarbazone Complexes as Single Source Precursors

We report the synthesis of lead(II) complexes of 2-(thiophen-2-ylmethylene) hydrazine-1-carbothioamide (1) and 2-(1-(thiophen-2-yl) ethylene) hydrazine-1-carbothioamide (2), which were used as single source precursors in hexadecylamine (HDA) and oleylamine (OLA) at 190, 230, and 270°C to synthesize lead(II) sulfide nanoparticles. Optical studies by UV–vis analysis showed a general blue shift in the absorption band edge of the PbS nanoparticles (NPs) with energy bandgaps determined by Tauc’s plots ranging from 2.15 to 3.11 eV. The development of NPs with a variety of morphologies that changed with temperature and precursor type was demonstrated by morphological characterization using scanning electron microscopy and transmission electron microscopy. Cubic, rod-shaped, and nearly spherical-shaped PbS were formed. Powder X-ray diffraction (p-XRD) structural studies revealed the face-centered cubic structure of PbS nanoparticles. The elements contained in the nanoparticles were identified by energy dispersive X-ray spectroscopy (EDX). These results suggest that the size, shape, and optical properties of the synthesized PbS NPs were affected by reaction temperature, capping group, and precursor type. Under UV irradiation, the photocatalytic activity of HDA-capped PbS nanoparticles on the degradation of methylene blue dye ranged from 28.3% to 60.0%, with lead sulfide nanoparticle obtained by thermolysis of complex (1) at 230°C showing the highest photocatalytic efficiency (60.0%).

Journal of Nanomaterials
 Journal metrics
See full report
Acceptance rate16%
Submission to final decision138 days
Acceptance to publication53 days
CiteScore5.100
Journal Citation Indicator-
Impact Factor-
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.