About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 109037, 19 pages
http://dx.doi.org/10.1155/2012/109037
Review Article

Diet, Genetics, and Disease: A Focus on the Middle East and North Africa Region

1Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
2Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon

Received 31 August 2011; Accepted 27 November 2011

Academic Editor: Hamed R. Takruri

Copyright © 2012 Akl C. Fahed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Grigg, “Food consumption in the Mediterranean region,” Tijdschrift voor Economische en Sociale Geografie, vol. 90, no. 4, pp. 391–409, 1999. View at Scopus
  2. A. O. Musaiger, “Diet and prevention of coronary heart disease in the Arab Middle East countries,” Medical Principles and Practice, vol. 11, supplement 2, pp. 9–16, 2002. View at Publisher · View at Google Scholar
  3. A. Belal, “Nutrition-related chronic diseases Epidemic in UAE: can we stand to STOP it?” Sudanese Journal of Public Health, vol. 4, pp. 383–392, 2009.
  4. A. Alwan, “Noncommunicable diseases: a major challenge to public health in the Region,” Eastern Mediterranean Health Journal, vol. 3, pp. 6–16, 1997.
  5. K. Bagchi, “Iron deficiency anaemia—an old enemy,” Eastern Mediterranean Health Journal, vol. 10, no. 6, pp. 754–760, 2004. View at Scopus
  6. D. C. Klonoff, “The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease,” Journal of Diabetes Science and Technology, vol. 3, no. 6, pp. 1229–1232, 2009. View at Scopus
  7. A. Trichopoulou, T. Costacou, C. Bamia, and D. Trichopoulos, “Adherence to a Mediterranean diet and survival in a Greek population,” The New England Journal of Medicine, vol. 348, no. 26, pp. 2599–2608, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Russeau and M. Batal, The Healthy Kitchen, Recipes from Rural Lebanon, Ibsar, Nature Conservation Center for Sustainable Futures American University of Beirut, 2009.
  9. P. Mirmiran, R. Sherafat-Kazemzadeh, S. Jalali-Farahani, and F. Azizi, “Childhood obesity in the Middle East: a review,” Eastern Mediterranean Health Journal, vol. 16, no. 9, pp. 1009–1017, 2010. View at Scopus
  10. S. Yusuf, S. Reddy, S. Ôunpuu, and S. Anand, “Global burden of cardiovascular diseases part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies,” Circulation, vol. 104, no. 23, pp. 2855–2864, 2001. View at Scopus
  11. P. Zimmet, D. Canteloube, and B. Genelle, “The prevalence of diabetes mellitus and impaired glucose tolerance in Melanesians and part-Polynesians in rural New Caledonia and Ouvea (Loyalty Islands),” Diabetologia, vol. 23, no. 5, pp. 393–398, 1982.
  12. International Diabetes Federation, IDF Diabetes Atlas, 1st edition, 2000, http://www.eatlas.idf.org/.
  13. International Diabetes Federation, IDF Diabetes Atlas, 2nd edition, 2003, http://www.eatlas.idf.org/.
  14. International Diabetes Federation, IDF Diabetes Atlas, 3rd edition, 2007, http://www.eatlas.idf.org/.
  15. International Diabetes Federation, IDF Diabetes Atlas, 4th edition, 2010, http://www.eatlas.idf.org.
  16. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. WHS, World Health Statistics Annual, 2005, http://www.who.int/whosis/whostat.
  18. WHS, World Health Statistics Annual, 2011, http://www.who.int/whosis/whostat.
  19. S. Yusuf, S. Reddy, S. Ôunpuu, and S. Anand, “Global burden of cardiovascular diseases. Part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization,” Circulation, vol. 104, no. 22, pp. 2746–2753, 2001. View at Scopus
  20. WHO, Draft Nutrition Strategy and Plan of Action for Countries of the Eastern Mediterranean Region 2010–2019, 2009.
  21. O. M. Galal, “Micronutrient deficiency conditions in the middle east region: an overview,” Public Health Reviews, vol. 28, no. 1–4, pp. 1–12, 2000. View at Scopus
  22. A. Mithal, D. A. Wahl, J. P. Bonjour et al., “Global vitamin D status and determinants of hypovitaminosis D,” Osteoporosis International, vol. 20, no. 11, pp. 1807–1820, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Moussavi, R. Heidarpour, A. Aminorroaya, Z. Pournaghshband, and M. Amini, “Prevalence of vitamin D deficiency in Isfahani high school students in 2004,” Hormone Research, vol. 64, no. 3, pp. 144–148, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. M. Siddiqui and H. Z. Kamfar, “Prevalence of vitamin D deficiency rickets in adolescent school girls in Western region, Saudi Arabia,” Saudi Medical Journal, vol. 28, no. 3, pp. 441–444, 2007. View at Scopus
  25. J. M. Ordovas and V. Mooser, “Nutrigenomics and nutrigenetics,” Current Opinion in Lipidology, vol. 15, no. 2, pp. 101–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. G. P. A. Kauwell, “Emerging concepts in nutrigenomics: a preview of what is to come,” Nutrition in Clinical Practice, vol. 20, no. 1, pp. 75–87, 2005. View at Scopus
  27. R. G. Gosden and A. P. Feinberg, “Genetics and epigenetics—nature's pen-and-pencil set,” The New England Journal of Medicine, vol. 356, no. 7, pp. 731–733, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. S. Sebert, D. Sharkey, H. Budge, and M. E. Symonds, “The early programming of metabolic health: is epigenetic setting the missing link?” American Journal of Clinical Nutrition, vol. 94, no. 6, pp. 1953S–1958S, 2011. View at Publisher · View at Google Scholar · View at PubMed
  29. R. A. Waterland and R. L. Jirtle, “Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases,” Nutrition, vol. 20, no. 1, pp. 63–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Singh, B. Murphy, and R. L. O'Reilly, “Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia,” Clinical Genetics, vol. 64, no. 6, pp. 451–460, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Debusk, “The role of nutritional genomics in developing an optimal diet for humans,” Nutrition in Clinical Practice, vol. 25, no. 6, pp. 627–633, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. P. J. Stover, “Influence of human genetic variation on nutritional requirements,” American Journal of Clinical Nutrition, vol. 83, no. 2, 2006. View at Scopus
  33. R. L. Jirtle and M. K. Skinner, “Environmental epigenomics and disease susceptibility,” Nature Reviews Genetics, vol. 8, no. 4, pp. 253–262, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. B. Modrek and C. Lee, “A genomic view of alternative splicing,” Nature Genetics, vol. 30, no. 1, pp. 13–19, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. D. Davis and J. Milner, “Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention,” Mutation Research, vol. 551, no. 1-2, pp. 51–64, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. Pardanani, E. D. Wieben, T. C. Spelsberg, and A. Tefferi, “Primer on medical genomics part IV: expression proteomics,” Mayo Clinic Proceedings, vol. 77, no. 11, pp. 1185–1196, 2002. View at Scopus
  38. A. El-Sohemy, “Nutrigenetics,” Forum of Nutrition, vol. 60, pp. 25–30, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. V. Neel, “Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"?” American Journal of Human Genetics, vol. 14, pp. 353–362, 1962. View at Scopus
  40. R. S. Lindsay and P. H. Bennett, “Type 2 diabetes, the thrifty phenotype—an overview,” British Medical Bulletin, vol. 60, pp. 21–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Garcia-Bailo, C. Toguri, K. M. Eny, and A. El-Sohemy, “Genetic variation in taste and its influence on food selection,” OMICS, vol. 13, no. 1, pp. 69–80, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. B. Eaton and S. B. Eaton, “Paleolithic vs. modern diets—selected pathophysiological implications,” European Journal of Nutrition, vol. 39, no. 2, pp. 67–70, 2000. View at Scopus
  43. A. M. Prentice, “Obesity in emerging nations: evolutionary origins and the impact of a rapid nutrition transition,” Nestle Nutrition Workshop Series: Pediatric Program, vol. 63, pp. 47–57, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. Konner and S. Boyd Eaton, “Paleolithic nutrition: twenty-five years later,” Nutrition in Clinical Practice, vol. 25, no. 6, pp. 594–602, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. K. R. Timpano, N. B. Schmidt, M. G. Wheaton, J. R. Wendland, and D. L. Murphy, “Consideration of the BDNF gene in relation to two phenotypes: hoarding and obesity,” Journal of Abnormal Psychology, vol. 120, no. 3, pp. 700–707, 2011. View at Publisher · View at Google Scholar · View at PubMed
  46. C. Church, S. Lee, E. A. L. Bagg et al., “A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene,” PLoS Genetics, vol. 5, no. 8, Article ID e1000599, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. C. Dina, D. Meyre, S. Gallina et al., “Variation in FTO contributes to childhood obesity and severe adult obesity,” Nature Genetics, vol. 39, no. 6, pp. 724–726, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. T. M. Frayling, N. J. Timpson, M. N. Weedon et al., “A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity,” Science, vol. 316, no. 5826, pp. 889–894, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. S. Ereqat, A. Nasereddin, S. Cauchi, K. Azmi, Z. Abdeen, and R. Amin, “Association of a common variant in TCF7L2 gene with type 2 diabetes mellitus in the Palestinian population,” Acta Diabetologica, vol. 47, no. 1, pp. S195–S198, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. M. Zaharna, A. A. Abed, and F. A. Sharif, “Calpain-10 gene polymorphism in type 2 diabetes mellitus patients in the gaza strip,” Medical Principles and Practice, vol. 19, no. 6, pp. 457–462, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. I. Ezzidi, N. Mtiraoui, R. Nemr et al., “Variants within the calpain-10 gene and relationships with type 2 diabetes (T2DM) and T2DM-related traits among Tunisian Arabs,” Diabetes and Metabolism, vol. 36, no. 5, pp. 357–362, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. S. Mehri, B. Baudin, S. Mahjoub et al., “Angiotensin-converting enzyme insertion/deletion gene polymorphism in a Tunisian healthy and acute myocardial infarction population,” Genetic Testing and Molecular Biomarkers, vol. 14, no. 1, pp. 85–91, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. T. P. They-They, K. Hamzi, M. T. Moutawafik, H. Bellayou, M. El Messal, and S. Nadifi, “Prevalence of angiotensin-converting enzyme, methylenetetrahydrofolate reductase, Factor v Leiden, prothrombin and apolipoprotein e gene polymorphisms in Morocco,” Annals of Human Biology, vol. 37, no. 6, pp. 767–777, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. M. Akra-Ismail, R. F. Makki, H. N. Chmaisse, A. Kazma, and N. K. Zgheib, “Association between angiotensin-converting enzyme insertion/deletion genetic polymorphism and hypertension in a sample of Lebanese patients,” Genetic Testing and Molecular Biomarkers, vol. 14, no. 6, pp. 787–792, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. R. Nemr, R. A. Salman, L. H. Jawad, E. A. Juma, S. H. Keleshian, and W. Y. Almawi, “Differential contribution of MTHFR C677T variant to the risk of diabetic nephropathy in Lebanese and Bahraini Arabs,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 8, pp. 1091–1094, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. K. K. Abu-Amero, C. A. Wyngaard, O. M. Al-Boudari, M. Kambouris, and N. Dzimiri, “Lack of association of lipoprotein lipase gene polymorphisms with coronary artery disease in the Saudi Arab population,” Archives of Pathology and Laboratory Medicine, vol. 127, no. 5, pp. 597–600, 2003. View at Scopus
  57. K. K. Abu-Amero, O. M. Al-Boudari, G. H. Mohamed, and N. Dzimiri, “The Glu27 genotypes of the Beta2-adrenergic receptor are predictors for severe coronary artery disease,” BMC Medical Genetics, vol. 7, article 31, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. K. Shiwaku, A. Nogi, E. Anuurad et al., “Difficulty in losing weight by behavioral intervention for women with Trp64Arg polymorphism of the β3-adrenergic receptor gene,” International Journal of Obesity, vol. 27, no. 9, pp. 1028–1036, 2003. View at Publisher · View at Google Scholar · View at PubMed
  59. A. Memisoglu, F. B. Hu, S. E. Hankinson et al., “Interaction between a peroxisome proliferator-activated receptor γ gene polymorphism and dietary fat intake in relation to body mass,” Human Molecular Genetics, vol. 12, no. 22, pp. 2923–2929, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. J. Luan, P. O. Browne, A. H. Harding et al., “Evidence for gene-nutrient interaction at the PPARγ locus,” Diabetes, vol. 50, no. 3, pp. 686–689, 2001. View at Scopus
  61. V. Lindi, U. Schwab, A. Louheranta et al., “Impact of the Pro12Ala polymorphism of the PPAR-γ2 gene on serum triacylglycerol response to n-3 fatty acid supplementation,” Molecular Genetics and Metabolism, vol. 79, no. 1, pp. 52–60, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. J. A. Moreno, J. López-Miranda, C. Marín et al., “The influence of the apolipoprotein E gene promoter (-219G/T) polymorphism on postprandial lipoprotein metabolism in young normolipemic males,” Journal of Lipid Research, vol. 44, no. 11, pp. 2059–2064, 2003. View at Publisher · View at Google Scholar · View at PubMed
  63. G. J. Petot, F. Traore, S. M. Debanne, A. J. Lerner, K. A. Smyth, and R. P. Friedland, “Interactions of apolipoprotein E genotype and dietary fat intake of healthy older persons during mid-adult life,” Metabolism, vol. 52, no. 3, pp. 279–281, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. B. J. Nicklas, R. E. Ferrell, L. B. Bunyard, D. M. Berman, K. E. Dennis, and A. P. Goldberg, “Effects of apolipoprotein E genotype on dietary-induced changes in high-density lipoprotein cholesterol in obese postmenopausal women,” Metabolism, vol. 51, no. 7, pp. 853–858, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. J. T. Bazzaz, M. Nazari, H. Nazem et al., “Apolipoprotein e gene polymorphism and total serum cholesterol level in Iranian population,” Journal of Postgraduate Medicine, vol. 56, no. 3, pp. 173–175, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. A. O. Akanji, C. G. Suresh, H. R. Fatania, R. Al-Radwan, and M. Zubaid, “Associations of apolipoprotein E polymorphism with low-density lipoprotein size and subfraction profiles in Arab patients with coronary heart disease,” Metabolism, vol. 56, no. 4, pp. 484–490, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. J. M. Ordovas, D. Corella, S. Demissie et al., “Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene-nutrient interaction in the Framingham study,” Circulation, vol. 106, no. 18, pp. 2315–2321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. E. S. Tai, D. Corella, M. Deurenberg-Yap et al., “Dietary fat interacts with the -514C>T polymorphism in the hepatic lipase gene promoter on plasma lipid profiles in a Multiethnic Asian population: the 1998 Singapore National Health Survey,” Journal of Nutrition, vol. 133, no. 11, pp. 3399–3408, 2003. View at Scopus
  69. L. S. Rozek, T. S. Hatsukami, R. J. Richter et al., “The correlation of paraoxonase (PON1) activity with lipid and lipoprotein levels differs with vascular disease status,” Journal of Lipid Research, vol. 46, no. 9, pp. 1888–1895, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. G. P. Jarvik, L. S. Rozek, V. H. Brophy et al., “Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1192 or PON155 genotype,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 11, pp. 2441–2447, 2000.
  71. B. Agachan, H. Yilmaz, Z. Karaali, and T. Isbir, “Paraoxonase 55 and 192 polymorphism and its relationship to serum paraoxonase activity and serum lipids in Turkish patients with non-insulin dependent diabetes mellitus,” Cell Biochemistry and Function, vol. 22, no. 3, pp. 163–168, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. L. G. Costa, A. Vitalone, T. B. Cole, and C. E. Furlong, “Modulation of paraoxonase (PON1) activity,” Biochemical Pharmacology, vol. 69, no. 4, pp. 541–550, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. I. Nabipour, M. Amiri, S. R. Imami et al., “The metabolic syndrome and nonfatal ischemic heart disease; a population-based study,” International Journal of Cardiology, vol. 118, no. 1, pp. 48–53, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. M. Nsour, Z. Mahfoud, M. N. Kanaan, and A. Balbeissi, “Prevalence and predictors of non-fatal myocardial infarction in Jordan,” Eastern Mediterranean Health Journal, vol. 14, no. 4, pp. 818–830, 2008. View at Scopus
  75. M. M. Al-Nozha, M. R. Arafah, Y. Y. Al-Mazrou et al., “Coronary artery disease in Saudi Arabia,” Saudi Medical Journal, vol. 25, no. 9, pp. 1165–1171, 2004. View at Scopus
  76. H. Ben Romdhane, R. Khaldi, A. Oueslati, and H. Skhiri, “Transition épidémiologique et transition alimentaire et nutritionnelle en Tunisie,” Options Méditerranéennes B, vol. 41, 2002.
  77. A. Al-Jishi and P. Mohan, “Profile of stroke in Bahrain,” Neurosciences, vol. 5, no. 1, pp. 30–34, 2000.
  78. A. A. Ahangar, S. B. A. Vaghefi, and M. Ramaezani, “Epidemiological evaluation of stroke in Babol, Northern Iran (2001–2003),” European Neurology, vol. 54, no. 2, pp. 93–97, 2005. View at Publisher · View at Google Scholar · View at PubMed
  79. N. U. A. M. A. Abdul-Ghaffar, M. R. El-Sonbaty, M. S. El-Din Abdul-Baky, A. A. Marafie, and A. M. Al-Said, “Stroke in Kuwait: a three-year prospective study,” Neuroepidemiology, vol. 16, no. 1, pp. 40–47, 1997. View at Scopus
  80. K. Radhakrishnan, P. P. Ashok, R. Sridharan, and M. A. El-Mangoush, “Incidence and pattern of cerebrovascular diseases in Benghazi, Libya,” Journal of Neurology Neurosurgery and Psychiatry, vol. 49, no. 5, pp. 519–523, 1986. View at Scopus
  81. W. M. Sweileh, A. F. Sawalha, S. M. Al-Aqad, et al., “The epidemiology of stroke in northern palestine: a 1-year, hospital-based study,” Journal of Stroke and Cerebrovascular Diseases, vol. 17, no. 6, pp. 406–411, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. A. Hamad, A. Hamad, T. E. O. Sokrab, S. Momeni, B. Mesraoua, and A. Lingren, “Stroke in Qatar: a one-year, hospital-based study,” Journal of Stroke and Cerebrovascular Diseases, vol. 10, no. 5, pp. 236–241, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. S. Al-Rajeh, E. B. Larbi, O. Bademosi et al., “Stroke register: experience from the Eastern Province of Saudi Arabia,” Cerebrovascular Diseases, vol. 8, no. 2, pp. 86–89, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Yahia-Berrouiguet, M. Benyoucef, K. Meguenni, and M. Brouri, “Prevalence of cardiovascular risk factors: a survey at Tlemcen (Algeria),” Medecine des Maladies Metaboliques, vol. 3, no. 3, pp. 313–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. F. I. Al-Zurba, “Latest studies clarify state of health in Bahrain,” Diabetes Voice, vol. 46, pp. 28–31, 2001.
  86. M. M. Ibrahim, H. Rizk, L. J. Appel et al., “Hypertension prevalence, awareness, treatment, and control in Egypt: results from the Egyptian National Hypertension Project (NHP),” Hypertension, vol. 26, no. 6, pp. 886–890, 1995. View at Scopus
  87. O. M. Galal, “The nutrition transition in Egypt: obesity, undernutrition and the food consumption context,” Public Health Nutrition, vol. 5, no. 1, pp. 141–148, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. N. Sarraf-Zadegan, M. Boshtam, S. Mostafavi, and M. Rafiei, “Prevalence of hypertension and associated risk factors in Isfahan, Islamic Republic of Iran,” Eastern Mediterranean Health Journal, vol. 5, no. 5, pp. 992–1001, 1999. View at Scopus
  89. A. A. Haghdoost, B. Sadeghirad, and M. Rezazadehkermani, “Epidemiology and heterogeneity of hypertension in Iran: a systematic review,” Archives of Iranian Medicine, vol. 11, no. 4, pp. 444–452, 2008. View at Scopus
  90. WHO, “STEPwise surveillance. Non-communicable diseases risk factors. STEPwise data from selected countries in the Eastern Mediterranean Region, 2003–2007,” 2007, http://www.emro.who.int/ncd/risk_factors.htm#physical.
  91. M. Zindah, A. Belbeisi, H. Walke, and A. H. Mokdad, “Obesity and diabetes in Jordan: findings from the behavioral risk factor surveillance system, 2004,” Preventing Chronic Disease, vol. 5, pp. 1–8, 2008.
  92. A.-M. Sibai, O. Obeid, M. Batal, N. Adra, D. E. Khoury, and N. Hwalla, “Prevalence and correlates of metabolic syndrome in an adult Lebanese population,” CVD Prevention and Control, vol. 3, no. 2, pp. 83–90, 2008. View at Publisher · View at Google Scholar
  93. M. A. Tazi, S. Abir-Khalil, N. Chaouki et al., “Prevalence of the main cardiovascular risk factors in Morocco: results of a National Survey, 2000,” Journal of Hypertension, vol. 21, no. 5, pp. 897–903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. A. A. Hasab, A. Jaffer, and Z. Hallaj, “Blood pressure patterns among the Omani population,” Eastern Mediterranean Health Journal, vol. 5, no. 1, pp. 46–54, 1999. View at Scopus
  95. H. F. Abdul-Rahim, G. Holmboe-Ottesen, L. C. M. Stene et al., “Obesity in a rural and an urban Palestinian West Bank population,” International Journal of Obesity, vol. 27, no. 1, pp. 140–146, 2003. View at Publisher · View at Google Scholar · View at PubMed
  96. A. Bener, J. Al-Suwaidi, K. Al-Jaber, S. Al-Marri, M. H. Dagash, and I. E. Elbagi, “The prevalence of hypertension and its associated risk factors in a newly developed country,” Saudi Medical Journal, vol. 25, no. 7, pp. 918–922, 2004. View at Scopus
  97. M. M. Al-Nozha, M. Abdullah, M. R. Arafah et al., “Hypertension in Saudi Arabia,” Saudi Medical Journal, vol. 28, no. 1, pp. 77–84, 2007. View at Scopus
  98. W. Maziak, S. Rastam, F. Mzayek, K. D. Ward, T. Eissenberg, and U. Keil, “Cardiovascular health among adults in Syria: a model from developing countries,” Annals of Epidemiology, vol. 17, no. 9, pp. 713–720, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. H. M. Sonmez, O. Basak, C. Camci et al., “The epidemiology of elevated blood pressure as an estimate for hypertension in Aydin, Turkey,” Journal of Human Hypertension, vol. 13, no. 6, pp. 399–404, 1999.
  100. L. M. Baynouna, A. D. Revel, N. J. Nagelkerke et al., “High prevalence of the cardiovascular risk factors in Al-Ain, United Arab Emirates. An emerging health care priority,” Saudi Medical Journal, vol. 29, no. 8, pp. 1173–1178, 2008. View at Scopus
  101. A. A. Gunaid and A. M. Assabri, “Prevalence of type 2 diabetes and other cardiovascular risk factors in a semirural area in Yemen,” La Revue de Santé de la Méditerranée Orientale, vol. 14, no. 1, pp. 42–56, 2008. View at Scopus
  102. B. Motlagh, M. O'Donnell, and S. Yusuf, “Prevalence of cardiovascular risk factors in the middle east: a systematic review,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 16, no. 3, pp. 268–280, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. A. Mehio Sibai, L. Nasreddine, A. H. Mokdad, N. Adra, M. Tabet, and N. Hwalla, “Nutrition transition and cardiovascular disease risk factors in Middle East and North Africa countries: reviewing the evidence,” Annals of Nutrition and Metabolism, vol. 57, no. 3-4, pp. 193–203, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. Y. Khader, A. Bateiha, M. El-Khateeb, A. Al-Shaikh, and K. Ajlouni, “High prevalence of the metabolic syndrome among Northern Jordanians,” Journal of Diabetes and Its Complications, vol. 21, no. 4, pp. 214–219, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. I. Al Rashdan and Y. Al Nesef, “Prevalence of overweight, obesity, and metabolic syndrome among adult Kuwaitis: results from community-based national survey,” Angiology, vol. 61, no. 1, pp. 42–48, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. M. Rguibi and R. Belahsen, “Metabolic syndrome among Moroccan Sahraoui adult women,” American Journal of Human Biology, vol. 16, no. 5, pp. 598–601, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. J. A. Al-Lawati and P. Jousilahti, “Prevalence of metabolic syndrome in Oman using the International Diabetes Federation's criteria,” Saudi Medical Journal, vol. 27, no. 12, pp. 1925–1926, 2006. View at Scopus
  108. M. Musallam, A. Bener, M. Zirie et al., “Metabolic syndrome and its components among Qatari population,” International Journal of Food Safety, Nutrition and Public Health, vol. 1, no. 1, pp. 88–102, 2008.
  109. A. Bener, M. Zirie, M. Musallam, Y. S. Khader, and A. O. Al-Hamaq, “Prevalence of metabolic syndrome according to adult treatment panel III and international diabetes federation criteria: a population-based study,” Metabolic Syndrome and Related Disorders, vol. 7, no. 3, pp. 221–230, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. M. M. Al-Nozha, A. Al-Khadra, M. R. Arafah et al., “Metabolic syndrome in Saudi Arabia,” Saudi Medical Journal, vol. 26, no. 12, pp. 1918–1925, 2005. View at Scopus
  111. R. Bouguerra, L. Ben Salem, H. Alberti et al., “Prevalence of metabolic abnormalities in the Tunisian adults: a population based study,” Diabetes and Metabolism, vol. 32, no. 3, pp. 215–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Malik and S. A. Razig, “The prevalence of the metabolic syndrome among the multiethnic population of the United Arab Emirates: a report of a national survey,” Metabolic Syndrome and Related Disorders, vol. 6, no. 3, pp. 177–186, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. P. M. Kearney, M. Whelton, K. Reynolds, P. K. Whelton, and J. He, “Worldwide prevalence of hypertension: a systematic review,” Journal of Hypertension, vol. 22, no. 1, pp. 11–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. T. A. Gaziano, A. Bitton, S. Anand, S. Abrahams-Gessel, and A. Murphy, “Growing epidemic of coronary heart disease in low- and middle-income countries,” Current Problems in Cardiology, vol. 35, no. 2, pp. 72–115, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. R. M. Mabry, M. M. Reeves, E. G. Eakin, and N. Owen, “Gender differences in prevalence of the metabolic syndrome in Gulf Cooperation Council Countries: a systematic review,” Diabetic Medicine, vol. 27, no. 5, pp. 593–597, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. J. Tran, M. Mirzaei, L. Anderson, and S. R. Leeder, “The epidemiology of stroke in the Middle East and North Africa,” Journal of the Neurological Sciences, vol. 295, no. 1-2, pp. 38–40, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. G. P. Page, J. W. Edwards, S. Barnes, R. Weindruch, and D. B. Allison, “A design and statistical perspective on microarray gene expression studies in nutrition: the need for playful creativity and scientific hard-mindedness,” Nutrition, vol. 19, no. 11-12, pp. 997–1000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. M. F. Fenech, “Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future,” American Journal of Clinical Nutrition, vol. 91, no. 5, pp. 1438S–1454S, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. S. Kimball, G. E. H. Fuleihan, and R. Vieth, “Vitamin D: a growing perspective,” Critical Reviews in Clinical Laboratory Sciences, vol. 45, no. 4, pp. 339–414, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. R. Chesney, “Metabolic bone disease,” in Nelson Textbook of Pediatrics, R. E. Behrman, R. Kliegman, and H. B. Jenson, Eds., pp. 2132–2138, WB Saunders, Philadelphia, Pa, USA, 16th edition, 2000.
  121. S. Wang, “Epidemiology of vitamin D in health and disease,” Nutrition Research Reviews, vol. 22, no. 2, pp. 188–203, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. C. F. Garland, F. C. Garland, E. D. Gorham et al., “The role of vitamin D in cancer prevention,” American Journal of Public Health, vol. 96, no. 2, pp. 252–261, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. M. Janner, P. Ballinari, P. E. Mullis, and C. E. Flück, “High prevalence of vitamin D deficiency in children and adolescents with type 1 diabetes,” Swiss Medical Weekly, vol. 140, article w13091, 2010. View at Scopus
  124. J. S. Adams and M. Hewison, “Update in vitamin D,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 471–478, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. S. R. Kreiter, R. P. Schwartz, H. N. Kirkman, P. A. Charlton, A. S. Calikoglu, and M. L. Davenport, “Nutritional rickets in African American breast-fed infants,” Journal of Pediatrics, vol. 137, no. 2, pp. 153–157, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. N. G. Jablonski and G. Chaplin, “The evolution of human skin coloration,” Journal of Human Evolution, vol. 39, no. 1, pp. 57–106, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  127. P. Lee, J. R. Greenfield, M. J. Seibel, J. A. Eisman, and J. R. Center, “Adequacy of vitamin D replacement in severe deficiency is dependent on body mass index,” American Journal of Medicine, vol. 122, no. 11, pp. 1056–1060, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. M. H. Gannagé-Yared, G. Maalouf, S. Khalife et al., “Prevalence and predictors of vitamin D inadequacy amongst Lebanese osteoporotic women,” British Journal of Nutrition, vol. 101, no. 4, pp. 487–491, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. K. Holvik, H. E. Meyer, E. Haug, and L. Brunvand, “Prevalence and predictors of vitamin D deficiency in five immigrant groups living in Oslo, Norway: the Oslo immigrant health study,” European Journal of Clinical Nutrition, vol. 59, no. 1, pp. 57–63, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  130. G. I. Baroncelli, A. Bereket, M. El Kholy et al., “Rickets in the Middle East: role of environment and genetic predisposition,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 5, pp. 1743–1750, 2008. View at Publisher · View at Google Scholar · View at PubMed
  131. S. K. Ames, K. J. Ellis, S. K. Gunn, K. C. Copeland, and S. A. Abrams, “Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children,” Journal of Bone and Mineral Research, vol. 14, no. 5, pp. 740–746, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. H. Arai, K. I. Miyamoto, Y. Taketani et al., “A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women,” Journal of Bone and Mineral Research, vol. 12, no. 6, pp. 915–921, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. C. D. Davis, “Vitamin D and cancer: current dilemmas and future research needs,” American Journal of Clinical Nutrition, vol. 88, no. 2, 2008. View at Scopus
  134. M. A. Abdullah, H. S. Salhi, L. A. Bakry et al., “Adolescent rickets in Saudi Arabia: a rich and sunny country,” Journal of Pediatric Endocrinology and Metabolism, vol. 15, no. 7, pp. 1017–1025, 2002. View at Scopus
  135. H. Arai, K. I. Miyamoto, M. Yoshida et al., “The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene,” Journal of Bone and Mineral Research, vol. 16, no. 7, pp. 1256–1264, 2001. View at Scopus
  136. A. V. Krishnan, S. Swami, J. Moreno, R. B. Bhattacharyya, D. M. Peehl, and D. Feldman, “Potentiation of the growth-inhibitory effects of vitamin D in prostate cancer by genistein,” Nutrition Reviews, vol. 65, no. 8, pp. S121–123, 2007. View at Scopus
  137. A. Ali, G. Fathy, H. Fathy, and N. Abd El-Ghaffar, “Epidemiology of iron deficiency anaemia: effect of physical growth in primary school children, the importance of hookworms,” International Journal of Academic Research, vol. 3, pp. 495–500, 2011.
  138. W. Burke, G. Imperatore, and M. Reyes, “Iron deficiency and iron overload: effects of diet and genes,” Proceedings of the Nutrition Society, vol. 60, no. 1, pp. 73–80, 2001. View at Scopus
  139. Chung and R. Wessling-Resnick, “Lessons learned from genetic and nutritional iron deficiencies,” Nutrition Reviews, vol. 62, no. 5, pp. 212–215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. J. E. Levy, L. K. Montross, and N. C. Andrews, “Genes that modify the hemochromatosis phenotype in mice,” Journal of Clinical Investigation, vol. 105, no. 9, pp. 1209–1216, 2000. View at Scopus
  141. L. B. Bailey and J. F. Gregory, “Folate metabolism and requirements,” Journal of Nutrition, vol. 129, no. 4, pp. 779–782, 1999. View at Scopus
  142. S. W. Choi and J. B. Mason, “Folate and carcinogenesis: an integrated scheme,” Journal of Nutrition, vol. 130, no. 2, pp. 129–132, 2000. View at Scopus
  143. M. Moussavi, R. Heidarpour, A. Aminorroaya, Z. Pournaghshband, and M. Amini, “Prevalence of vitamin D deficiency in Isfahani high school students in 2004,” Hormone Research, vol. 64, no. 3, pp. 144–148, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. A. Batieha, Y. Khader, H. Jaddou et al., “Vitamin D status in Jordan: dress style and gender discrepancies,” Annals of Nutrition and Metabolism, vol. 58, no. 1, pp. 10–18, 2011. View at Publisher · View at Google Scholar · View at PubMed
  145. G. El-Hajj Fuleihan, M. Nabulsi, M. Choucair et al., “Hypovitaminosis D in healthy schoolchildren,” Pediatrics, vol. 107, article E53, 2001. View at Scopus
  146. G. El-Hajj Fuleihan, M. Nabulsi, H. Tamim et al., “Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 405–412, 2006. View at Publisher · View at Google Scholar · View at PubMed
  147. A. Arabi, R. El Rassi, and G. El-Hajj Fuleihan, “Hypovitaminosis D in developing countries-prevalence, risk factors and outcomes,” Nature Reviews Endocrinology, vol. 6, no. 10, pp. 550–561, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. A. M. Siddiqui and H. Z. Kamfar, “Prevalence of vitamin D deficiency rickets in adolescent school girls in Western region, Saudi Arabia,” Saudi Medical Journal, vol. 28, no. 3, pp. 441–444, 2007. View at Scopus
  149. A. O. Musaiger, “Iron deficiency anaemia among children and pregnant women in the arab gulf countries: the need for action,” Nutrition and Health, vol. 16, no. 3, pp. 161–171, 2002. View at Scopus
  150. K. Bagchi, “Iron deficiency anaemia—an old enemy,” La Revue de Santé de la Méditerranée Orientale, vol. 10, no. 6, pp. 754–760, 2004.
  151. W. Y. Almawi, R. R. Finan, H. Tamim, J. L. Daccache, and N. Irani-Hakime, “Differences in the Frequency of the C677T Mutation in the Methylenetetrahydrofolate Reductase (MTHFR) Gene Among the Lebanese Population,” American Journal of Hematology, vol. 76, no. 1, pp. 85–87, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  152. A. M. T. Engbersen, D. G. Franken, G. H. J. Boers, E. M. B. Stevens, F. J. M. Trijbels, and H. J. Blom, “Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia,” American Journal of Human Genetics, vol. 56, no. 1, pp. 142–150, 1995. View at Scopus
  153. N. M. van der Put and H. J. Blom, “Neural tube defects and a disturbed folate dependent homocysteine metabolism,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 92, no. 1, pp. 57–61, 2000. View at Publisher · View at Google Scholar
  154. H. J. Huh, H. S. Chi, E. H. Shim, S. Jang, and C. J. Park, “Gene-nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population,” Thrombosis Research, vol. 117, no. 5, pp. 501–506, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  155. J. C. Chambers, H. Ireland, E. Thompson et al., “Methylenetetrahydrofolate reductase 677 C→T mutation and coronary heart disease risk in UK Indian Asians,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 11, pp. 2448–2452, 2000. View at Scopus
  156. S. A. Ross and L. Poirier, “Proceedings of the Trans-HHS Workshop: diet, DNA methylation processes and health,” Journal of Nutrition, vol. 132, no. 8, 2002. View at Scopus
  157. J. Ma, M. J. Stampfer, E. Giovannucci et al., “Methylenetetrahydrofolate reductase polymorsphism, dietary interactions, and risk of colorectal cancer,” Cancer Research, vol. 57, no. 6, pp. 1098–1102, 1997. View at Scopus
  158. Z. Abdollahi, I. Elmadfa, A. Djazayeri et al., “Folate, vitamin B12 and homocysteine status in women of childbearing age: baseline data of folic acid wheat flour fortification in Iran,” Annals of Nutrition and Metabolism, vol. 53, no. 2, pp. 143–150, 2008. View at Publisher · View at Google Scholar · View at PubMed
  159. S. L. Tokgözoǧlu, M. Alikaşifoǧlu, I. Ünsal et al., “Methylene tetrahydrofolate reductase genotype and the risk and extent of coronary artery disease in a population with low plasma folate,” Heart, vol. 81, no. 5, pp. 518–522, 1999.
  160. B. Christensen, P. Frosst, S. Lussier-Cacan et al., “Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 3, pp. 569–573, 1997.
  161. A. H. Messika, D. N. Kaluski, E. Lev et al., “Nutrigenetic impact of daily folate intake on plasma homocysteine and folate levels in patients with different methylenetetrahydrofolate reductase genotypes,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 17, no. 6, pp. 701–705, 2010. View at Publisher · View at Google Scholar · View at PubMed
  162. A. Wilson, R. Platt, Q. Wu et al., “A common variant in methionine synthase reductase combined with low cobalamin (Vitamin B12) increases risk for spina bifida,” Molecular Genetics and Metabolism, vol. 67, no. 4, pp. 317–323, 1999. View at Publisher · View at Google Scholar · View at PubMed
  163. L. E. Cahill, B. Fontaine-Bisson, and A. El-Sohemy, “Functional genetic variants of glutathione S-transferase protect against serum ascorbic acid deficiency,” American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1411–1417, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  164. L. E. Cahill and A. El-Sohemy, “Haptoglobin genotype modifies the association between dietary vitamin C and serum ascorbic acid deficiency,” American Journal of Clinical Nutrition, vol. 92, no. 6, pp. 1494–1500, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  165. J. M. Zingg, A. Azzi, and M. Meydani, “Genetic polymorphisms as determinants for disease-preventive effects of vitamin E,” Nutrition Reviews, vol. 66, no. 7, pp. 406–414, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  166. M. C. Zillikens, J. B. J. Van Meurs, F. Rivadeneira et al., “Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index,” American Journal of Clinical Nutrition, vol. 91, no. 5, pp. 1387–1393, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. H. Hamamy and A. Alwan, “Genetic disorders and congenital abnormalities: strategies for reducing the burden in the Region,” Eastern Mediterranean Health Journal, vol. 3, no. 1, pp. 123–132, 1997. View at Scopus