About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 280286, 8 pages
http://dx.doi.org/10.1155/2012/280286
Review Article

Dietary Ganglioside Reduces Proinflammatory Signaling in the Intestine

14-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada T6G 2R1
2200, 10150-102 street, Dyna LIFE Diagnostics, Edmonton, AB, Canada T5J 5E2
3Division of Gastroenterology, University of Western Ontario, London, ON, Canada N6A 5A5

Received 9 August 2011; Revised 7 October 2011; Accepted 7 October 2011

Academic Editor: Phillip B. Hylemon

Copyright © 2012 John Janez Miklavcic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Nakano, H. Yasui, K. O. Lloyd, and M. Muto, “Biologic roles of gangliosides G(M3) and G(D3) in the attachment of human melanoma cells to extracellular matrix proteins,” Journal of Investigative Dermatology Symposium Proceedings, vol. 4, no. 2, pp. 173–176, 1999. View at Scopus
  2. X. Q. Wang, Q. Yan, P. Sun et al., “Suppression of epidermal growth factor receptor signaling by protein kinase C-α activation requires CD82, caveolin-1, and ganglioside,” Cancer Research, vol. 67, no. 20, pp. 9986–9995, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Ohkubo and N. Nakahata, “The role of lipid rafts in trimeric G protein-mediated signal transduction,” Yakugaku Zasshi, vol. 127, no. 1, pp. 27–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Vyas, H. V. Patel, A. A. Vyas, and R. L. Schnaar, “Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers,” Biological Chemistry, vol. 382, no. 2, pp. 241–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. L. A. Drozdowski, M. T. Clandinin, and A. B. Thomson, “Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity,” World Journal of Gastroenterology, vol. 15, no. 7, pp. 774–787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Malisan and R. Testi, “GD3 ganglioside and apoptosis,” Biochimica et Biophysica Acta, vol. 1585, no. 2-3, pp. 179–187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Fukasawa, M. Nishijima, and K. Hanada, “Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells,” Journal of Cell Biology, vol. 144, no. 4, pp. 673–685, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Yasuda, H. Kitagawa, M. Ueno et al., “A novel inhibitor of ceramide trafficking from the endoplasmic reticulum to the site of sphingomyelin synthesis,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43994–44002, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kolter, R. L. Proia, and K. Sandhoff, “Combinatorial ganglioside biosynthesis,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 25859–25862, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Birklé, G. Zeng, L. Gao, R. K. Yu, and J. Aubry, “Role of tumor-associated gangliosides in cancer progression,” Biochimie, vol. 85, no. 3-4, pp. 455–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. M. Devlin, Ed., Textbook of Biochemistry with Clinical Correlations, Wiley Liss, New York, NY, USA, 3rd edition, 1992.
  12. M. Iwamori, J. Shimomura, S. Tsuyuhara, and Y. Nagai, “Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides,” Journal of Biochemistry, vol. 95, no. 3, pp. 761–770, 1984. View at Scopus
  13. E. Bieberich, “Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis,” Glycoconjugate Journal, vol. 21, no. 6, pp. 315–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Ledeen, “The chemistry of gangliosides: a review,” Journal of the American Oil Chemists Society, vol. 43, no. 2, pp. 57–66, 1966. View at Publisher · View at Google Scholar · View at Scopus
  15. L. K. Sorensen, “A liquid chromatography/tandem mass spectrometric approach for the determination of gangliosides GD3 and GM3 in bovine milk and infant formulae,” Rapid Communications in Mass Spectrometry, vol. 20, no. 24, pp. 3625–3633, 2006. View at Publisher · View at Google Scholar
  16. A. Prinetti, L. Basso, V. Appierto et al., “Altered sphingolipid metabolism in N-(4-hydroxyphenyl)-retinamide-resistant A2780 human ovarian carcinoma cells,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5574–5583, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Müthing, U. Maurer, U. Neumann, B. Kniep, and S. Weber-Schürholz, “Glycosphingolipids of skeletal muscle: I. Subcellular distribution of neutral glycosphingolipids and gangliosides in rabbit skeletal muscle,” Carbohydrate Research, vol. 307, no. 1-2, pp. 135–145, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Müthing, U. Maurer, and S. Weber-Schürholz, “Glycosphingolipids of skeletal muscle: II. Modulation of Ca2+-flux in triad membranes by gangliosides,” Carbohydrate Research, vol. 307, no. 1-2, pp. 147–157, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Chiantia, J. Ries, G. Chwastek et al., “Role of ceramide in membrane protein organization investigated by combined AFM and FCS,” Biochimica et Biophysica Acta, vol. 1778, no. 5, pp. 1356–1364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. E. J. Park, M. Suh, and M. T. Clandinin, “Dietary ganglioside and long-chain polyunsaturated fatty acids increase ganglioside GD3 content and alter the phospholipid profile in neonatal rat retina,” Investigative Ophthalmology and Visual Science, vol. 46, no. 7, pp. 2571–2575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Vanderghem, P. Bodson, S. Danthine, M. Paquot, C. Deroanne, and C. Blecker, “Milk fat globule membrane and buttermilks: from composition to valorization,” Biotechnology, Agronomy and Society and Environment, vol. 14, no. 3, pp. 485–500, 2010. View at Scopus
  22. K. L. Schnabl, M. Larcelet, A. B. R. Thomson, and M. T. Clandinin, “Uptake and fate of ganglioside GD3 in human intestinal Caco-2 cells,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 297, no. 1, pp. G52–G59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Bode, C. Beermann, M. Mank, G. Kohn, and G. Boehm, “Human and bovine milk gangliosides differ in their fatty acid composition,” Journal of Nutrition, vol. 134, no. 11, pp. 3016–3020, 2004. View at Scopus
  24. E. J. Park, M. Suh, B. Thomson, A. B. R. Thomson, K. S. Ramanujam, and M. T. Clandinin, “Dietary ganglioside decreases cholesterol content, caveolin expression and inflammatory mediators in rat intestinal microdomains,” Glycobiology, vol. 15, no. 10, pp. 935–942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. P. H. Pham, T. L. Duffy, A. L. Dmytrash, V. W. Lien, A. B. Thomson, and M. T. Clandinin, “Estimate of dietary ganglioside intake in a group of healthy edmontonians based on selected foods,” Journal of Food Composition and Analysis, vol. 24, no. 7, pp. 1032–1037, 2011. View at Publisher · View at Google Scholar
  26. E. J. Park, M. Suh, K. Ramanujam, K. Steiner, D. Begg, and M. T. Clandinin, “Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain,” Journal of Pediatric Gastroenterology and Nutrition, vol. 40, no. 4, pp. 487–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. E. Pagano, “Lipid traffic in eukaryotic cells: mechanisms for intracellular transport and organelle-specific enrichment of lipids,” Current Opinion in Cell Biology, vol. 2, no. 4, pp. 652–663, 1990. View at Scopus
  28. E. J. Park, M. Suh, B. Thomson et al., “Dietary ganglioside inhibits acute inflammatory signals in intestinal mucosa and blood induced by systemic inflammation of Escherichia coli lipopolysaccharide,” Shock, vol. 28, no. 1, pp. 112–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. L. Schnabl, B. Larsen, J. E. Van Aerde et al., “Gangliosides protect bowel in an infant model of necrotizing enterocolitis by suppressing proinflammatory signals,” Journal of Pediatric Gastroenterology and Nutrition, vol. 49, no. 4, pp. 382–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. E. J. Park, A. B. Thomson, and M. T. Clandinin, “Protection of intestinal occludin tight junction protein by dietary gangliosides in lipopolysaccharide-induced acute inflammation,” Journal of Pediatric Gastroenterology and Nutrition, vol. 50, no. 3, pp. 321–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Schnoor, A. Betanzos, D. A. Weber, and C. A. Parkos, “Guanylate-binding protein-1 is expressed at tight junctions of intestinal epithelial cells in response to interferon-γ and regulates barrier function through effects on apoptosis,” Mucosal Immunology, vol. 2, no. 1, pp. 33–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Agace, “Generation of gut-homing T cells and their localization to the small intestinal mucosa,” Immunology Letters, vol. 128, no. 1, pp. 21–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. L. S. Rott, J. R. Rosé, D. Bass, M. B. Williams, H. B. Greenberg, and E. C. Butcher, “Expression of mucosal homing receptor α4β7 by circulating CD4+ cells with memory for intestinal rotavirus,” Journal of Clinical Investigation, vol. 100, no. 5, pp. 1204–1208, 1997. View at Scopus
  34. D. A. Cheresh, R. Pytela, M. D. Pierschbacher, F. G. Klier, E. Ruoslahti, and R. A. Reisfeld, “An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the disialoganglioside GD2,” Journal of Cell Biology, vol. 105, no. 3, pp. 1163–1173, 1987. View at Scopus
  35. Y. Ohkawa, S. Miyazaki, M. Miyata, K. Hamamura, K. Furukawa, and K. Furukawa, “Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3,” Biochemical and Biophysical Research Communications, vol. 373, no. 1, pp. 14–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Simons and R. Ehehalt, “Cholesterol, lipid rafts, and disease,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 597–603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Brown and E. London, “Functions of lipid rafts in biological membranes,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 111–136, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Korade and A. K. Kenworthy, “Lipid rafts, cholesterol, and the brain,” Neuropharmacology, vol. 55, no. 8, pp. 1265–1273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. P. W. Janes, S. C. Ley, A. I. Magee, and P. S. Kabouridis, “The role of lipid rafts in T cell antigen receptor (TCR) signalling,” Seminars in Immunology, vol. 12, no. 1, pp. 23–34, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Simons and D. Toomre, “Lipid rafts and signal transduction,” Nature Reviews Molecular Cell Biology, vol. 1, no. 1, pp. 31–39, 2000. View at Scopus
  41. P. S. Kabouridis, J. Janzen, A. L. Magee, and S. C. Ley, “Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes,” European Journal of Immunology, vol. 30, no. 3, pp. 954–963, 2000. View at Scopus
  42. P. S. Kabouridis, A. I. Magee, and S. C. Ley, “S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes,” EMBO Journal, vol. 16, no. 16, pp. 4983–4998, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Zhang, R. P. Trible, and L. E. Samelson, “LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation,” Immunity, vol. 9, no. 2, pp. 239–246, 1998. View at Scopus
  44. K. Kasahara and Y. Sanai, “Possible roles of glycosphingolipids in lipid rafts,” Biophysical Chemistry, vol. 82, no. 2-3, pp. 121–127, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. K. L. Schnabl, C. Field, and M. T. Clandinin, “Ganglioside composition of differentiated Caco-2 cells resembles human colostrum and neonatal rat intestine,” British Journal of Nutrition, vol. 101, no. 5, pp. 694–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. B. U. Samuel, N. Mohandas, T. Harrison et al., “The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection,” Journal of Biological Chemistry, vol. 276, no. 31, pp. 29319–29329, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. A. A. Wolf, Y. Fujinaga, and W. I. Lencer, “Uncoupling of the cholera toxin-GM1 ganglioside receptor complex from endocytosis, retrograde golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 16249–16256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. C. N. Serhan, “Novel chemical mediators in the resolution of inflammation: resolvins and protectins,” Anesthesiology Clinics of North America, vol. 24, no. 2, pp. 341–364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. C. A. Hudert, K. H. Weylandt, Y. Lu et al., “Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11276–11281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. K. H. Weylandt, J. X. Kang, B. Wiedenmann, and D. C. Baumgart, “Lipoxins and resolvins in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 13, no. 6, pp. 797–799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. E. J. Park, M. Suh, A. B. Thomson, K. S. Ramanujam, and M. T. Clandinin, “Dietary gangliosides increase the content and molecular percentage of ether phospholipids containing 20:4n-6 and 22:6n-3 in weanling rat intestine,” Journal of Nutritional Biochemistry, vol. 17, no. 5, pp. 337–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J. F. Rodemann, E. R. Dubberke, K. A. Reske, D. H. Seo, and C. D. Stone, “Incidence of clostridium difficile infection in inflammatory bowel disease,” Clinical Gastroenterology and Hepatology, vol. 5, no. 3, pp. 339–344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Marquez, C. Nunez, A. Martinez et al., “Role of ATG16L1 Thr300Ala polymorphism in inflammatory bowel disease: a study in the spanish population and a meta-analysis,” Inflammatory Bowel Diseases, vol. 15, no. 11, pp. 1697–1704, 2009. View at Publisher · View at Google Scholar
  54. R. Cooney and D. Jewell, “The genetic basis of inflammatory bowel disease,” Digestive Diseases, vol. 27, no. 4, pp. 428–442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Szebeni, G. Veres, A. Dezsõfi et al., “Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease,” Clinical and Experimental Immunology, vol. 151, no. 1, pp. 34–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Yagci, T. Yagci, B. Sener, Y. Suziki, and K. Ahmed, “Sulfatide mediates attachment of Pseudomonas aeruginosa to human pharyngeal epithelial cells,” New Microbiologica, vol. 30, no. 2, pp. 167–171, 2007. View at Scopus
  57. F. Sanchez-Juanes, J. M. Alonso, L. Zancada, and P. Hueso, “Glycosphingolipids from bovine milk and milk fat globule membranes: a comparative study. Adhesion to enterotoxigenic Escherichia coli strains,” Biological Chemistry, vol. 390, no. 1, pp. 31–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. K. Weersma, P. C. Stokkers, A. A. van Bodegraven et al., “Molecular prediction of disease risk and severity in a large Dutch Crohn's disease cohort,” Gut, vol. 58, no. 3, pp. 388–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Sventoraityte, A. Zvirbliene, A. Franke et al., “NOD2, IL23R and ATG16L1 polymorphisms in Lithuanian patients with inflammatory bowel disease,” World Journal of Gastroenterology, vol. 16, no. 3, pp. 359–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Watanabe, A. Kitani, P. J. Murray, and W. Strober, “NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses,” Nature Immunology, vol. 5, no. 8, pp. 800–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Vasseur, B. Sendid, T. Jouault et al., “Variants of NOD1 and NOD2 genes display opposite associations with familial risk of crohn's disease and anti-saccharomyces cerevisiae antibody levels,” Bowel Diseases. In press. View at Publisher · View at Google Scholar
  62. D. N. Irani, K. L. Lin, and D. E. Griffin, “Brain-derived gangliosides regulate the cytokine production and proliferation ofactivated T cells,” Journal of Immunology, vol. 157, no. 10, pp. 4333–4340, 1996. View at Scopus
  63. H. L. Pahl, “Activators and target genes of Rel/NF-κB transcription factors,” Oncogene, vol. 18, no. 49, pp. 6853–6866, 1999. View at Scopus
  64. A. Colell, C. García-Ruiz, J. Roman, A. Ballesta, and J. C. Fernández-Checa, “Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-kappa B-dependent survival pathway,” The FASEB journal, vol. 15, no. 6, pp. 1068–1070, 2001. View at Scopus
  65. K. J. Khan, M. C. Dubinsky, A. C. Ford, T. A. Ullman, N. J. Talley, and P. Moayyedi, “Efficacy of immunosuppressive therapy for inflammatory bowel disease: a systematic review and meta-analysis,” American Journal of Gastroenterology, vol. 106, no. 4, pp. 630–642, 2011. View at Publisher · View at Google Scholar
  66. K. J. Khan, T. A. Ullman, A. C. Ford et al., “Antibiotic therapy in inflammatory bowel disease:a systematic review and meta-analysis,” American Journal of Gastroenterology, vol. 106, no. 4, pp. 661–673, 2011. View at Publisher · View at Google Scholar
  67. E. A. Maser, D. Deconda, S. Lichtiger, T. Ullman, D. H. Present, and A. Kornbluth, “Cyclosporine and infliximab as rescue therapy for each other in patients with steroid-refractory ulcerative colitis,” Clinical Gastroenterology and Hepatology, vol. 6, no. 10, pp. 1112–1116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Tsironi, D. Hadjidakis, E. Mallas, C. Tzathas, D. G. Karamanolis, and S. D. Ladas, “Comparison of T- and Z-score in identifying risk factors of osteoporosis in inflammatory bowel disease patients,” Journal of Musculoskeletal Neuronal Interactions, vol. 8, no. 1, pp. 79–84, 2008. View at Scopus
  69. C. N. Bernstein, S. Singh, L. A. Graff, J. R. Walker, N. Miller, and M. Cheang, “A prospective population-based study of triggers of symptomatic flares in IBD,” American Journal of Gastroenterology, vol. 105, no. 9, pp. 1994–2002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. Crohn's and Colitis Foundation of Canada Board, “The burden of inflammatory bowel disease (IBD) in canada,” Tech. Rep., Crohn's and Colitis Foundation of Canada Board, Toronto, ON, Canada, 2008.
  71. C. N. Bernstein, A. Wajda, L. W. Svenson et al., “The epidemiology of inflammatory bowel disease in Canada: a population-based study,” American Journal of Gastroenterology, vol. 101, no. 7, pp. 1559–1568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. G. Loftus, E. V. Loftus Jr, W. S. Harmsen et al., “Update on the incidence and prevalence of Crohn's disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000,” Inflammatory Bowel Diseases, vol. 13, no. 3, pp. 254–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Shivananda, J. Lennard-Jones, R. Logan et al., “Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? results of the European collaborative study on inflammatory bowel disease (EC-IBD),” Gut, vol. 39, no. 5, pp. 690–697, 1996. View at Scopus
  74. R. B. Gearry, A. Richardson, C. M. A. Frampton et al., “High incidence of Crohn's disease in Canterbury, New Zealand: results of an epidemiologic study,” Inflammatory Bowel Diseases, vol. 12, no. 10, pp. 936–943, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. A. P. Yu, L. A. Cabanilla, E. Q. Wu, P. M. Mulani, and J. Chao, “The costs of Crohn's disease in the United States and other Western countries: a systematic review,” Current Medical Research and Opinion, vol. 24, no. 2, pp. 319–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. R. N. Fedorak and A. B. R. Thomson, “Inflammatory bowel disease,” in First Principles of Gastroenterology, A. B. R. Thomson and E. A. Shaffer, Eds., pp. 326–372, AstraZeneca Canada, Mississauga, ON, Canada, 4th edition, 2000.
  77. R. K. Yantiss and R. D. Odze, “Diagnostic difficulties in inflammatory bowel disease pathology,” Histopathology, vol. 48, no. 2, pp. 116–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Abraham and J. H. Cho, “Inflammatory bowel disease,” New England Journal of Medicine, vol. 361, no. 21, pp. 2066–2078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. N. A. Molodecky and G. G. Kaplan, “Environmental risk factors for inflammatory bowel disease,” Gastroenterology and Hepatology, vol. 6, no. 5, pp. 339–346, 2010. View at Scopus
  80. T. Kolter and K. Sandhoff, “Sphingolipid metabolism diseases,” Biochimica et Biophysica Acta, vol. 1758, no. 12, pp. 2057–2079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. C. M. Costello, N. Mah, R. Häsler et al., “Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays,” PLoS Medicine, vol. 2, no. 8, Article ID e199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Lugering, T. Kucharzik, H. Stein et al., “IL-10 synergizes with IL-4 and IL-13 in inhibiting lysosomal enzyme secretion by human monocytes and lamina propria mononuclear cells from patients with inflammatory bowel disease,” Digestive Diseases and Sciences, vol. 43, no. 4, pp. 706–714, 1998. View at Publisher · View at Google Scholar · View at Scopus