About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 285395, 11 pages
http://dx.doi.org/10.1155/2012/285395
Review Article

Physical Activity Targeted at Maximal Lipid Oxidation: A Meta-Analysis

1EA 4556 Epsylon: Laboratory of Dynamics of human Abilities & Health Behaviors, University Montpellier 1, 34000 Montpellier, France
2Department of Nutrition and Diabetes, University Hospital of Montpellier, 34295 Montpellier, France
3INSERM U1046 “Physiologie et Médecine Expérimentale du Cœur et du Muscle”, Université Montpellier 1, Université Montpellier 2 et Centre Hospitalier Universitaire Lapeyronie, 34295 Montpellier, France
4Department of Clinical Physiology (CERAMM), University Hospital of Montpellier, 34295 Montpellier, France

Received 7 January 2012; Revised 26 March 2012; Accepted 22 May 2012

Academic Editor: Jørn Helge

Copyright © 2012 A. J. Romain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Bensimhon, W. E. Kraus, and M. P. Donahue, “Obesity and physical activity: a review,” American Heart Journal, vol. 151, no. 3, pp. 598–603, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Donnelly, S. N. Blair, J. M. Jakicic, M. M. Manore, J. W. Rankin, and B. K. Smith, “Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults,” Medicine and Science in Sports and Exercise, vol. 41, no. 2, pp. 459–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. F. E. Praet and L. J. C. Van Loon, “Optimizing the therapeutic benefits of exercise in type 2 diabetes,” Journal of Applied Physiology, vol. 103, no. 4, pp. 1113–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Pérez-Martin, M. Dumortier, E. Raynaud et al., “Balance of substrate oxidation during submaximal exercise in lean and obese people,” Diabetes and Metabolism, vol. 27, no. 4, part 1, pp. 466–474, 2001. View at Scopus
  5. J. Achten, M. Gleeson, and A. E. Jeukendrup, “Determination of the exercise intensity that elicits maximal fat oxidation,” Medicine and Science in Sports and Exercise, vol. 34, no. 1, pp. 92–97, 2002. View at Scopus
  6. D. P. van Aggel-Leijssen, W. H. Saris, A. J. Wagenmakers, G. B. Hul, and M. A. Van Baak, “The effect of low-intensity exercise training on fat metabolism of obese women,” Obesity Research, vol. 9, no. 2, pp. 86–96, 2001. View at Scopus
  7. G. A. Brooks and J. Mercier, “Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept,” Journal of Applied Physiology, vol. 76, no. 6, pp. 2253–2261, 1994. View at Scopus
  8. J. M. Jakicic and A. D. Otto, “Treatment and prevention of obesity: what is the role of exercise?” Nutrition Reviews, vol. 64, no. 1, part 2, pp. S57–S61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Jakicic and A. D. Otto, “Physical activity considerations for the treatment and prevention of obesity,” The American Journal of Clinical Nutrition, vol. 82, no. 1, supplement, pp. 226S–229S, 2005. View at Scopus
  10. J.-F. Brun, A.-J. Romain, and J. Mercier, “Maximal lipid oxidation during exercise (Lipoxmax): from physiological measurements to clinical applications. Facts and uncertainties,” Science and Sports, vol. 26, no. 2, pp. 57–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Brun, E. Varlet-Marie, A. J. Romain, and J. Mercier, “Measurement and physiological relevance of the maximal lipid oxidation rate during exercise (LIPOXmax),” in An International Perspective on Topics in Sports Medicine and Sports Injury, R. Kenneth Zaslav, Ed., InTech, 2012.
  12. M. Carayol, P. Grosclaude, and C. Delpierre, “Prospective studies of dietary alpha-linolenic acid intake and prostate cancer risk: a meta-analysis,” Cancer Causes and Control, vol. 21, no. 3, pp. 347–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Ben Ounis, M. Elloumi, I. Ben Chiekh et al., “Effects of two-month physical-endurance and diet-restriction programmes on lipid profiles and insulin resistance in obese adolescent boys,” Diabetes and Metabolism, vol. 34, no. 6, part 1, pp. 595–600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Brandou, M. Dumortier, P. Garandeau, J. Mercier, and J. F. Brun, “Effects of a two-month rehabilitation program on substrate utilization during exercise in obese adolescents,” Diabetes and Metabolism, vol. 29, no. 1, pp. 20–27, 2003. View at Scopus
  15. F. Brandou, A. M. Savy-Pacaux, J. Marie et al., “Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet,” Diabetes and Metabolism, vol. 31, no. 4, part 1, pp. 327–335, 2005. View at Scopus
  16. M. Dumortier, F. Brandou, A. Perez-Martin, C. Fedou, J. Mercier, and J. F. Brun, “Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome,” Diabetes and Metabolism, vol. 29, no. 5, pp. 509–518, 2003. View at Scopus
  17. C. Fédou, J. Fabre, V. Baillat, et al., “Balance des substrats à l’exercice chez des patients infectés par le VIH 1 et présentant un syndrome lipodystrophique: effet d’un réentraînement ciblé par la calorimétrie d’effort,” Science & Sports, vol. 23, no. 3-4, pp. 189–192, 2008.
  18. O. Ben Ounis, M. Elloumi, M. Amri, Y. Trabelsi, G. Lac, and Z. Tabka, “Impact of training and hypocaloric diet on fat oxidation and body composition in obese adolescents,” Science and Sports, vol. 24, no. 3-4, pp. 178–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Dumortier, A. Pérez-Martin, E. Pierrisnard, J. Mercier, and J. F. Brun, “Regular exercise (3 × 45 min/wk) decreases plasma viscosity in sedentary obese, insulin resistant patients parallel to an improvement in fitness and a shift in substrate oxidation balance,” Clinical Hemorheology and Microcirculation, vol. 26, no. 4, pp. 219–229, 2002. View at Scopus
  20. S. Bordenave, L. Metz, S. Flavier et al., “Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes,” Diabetes and Metabolism, vol. 34, no. 2, pp. 162–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Ben Ounis, M. Elloumi, G. Lac et al., “Two-month effects of individualized exercise training with or without caloric restriction on plasma adipocytokine levels in obese female adolescents,” Annales d'Endocrinologie, vol. 70, no. 4, pp. 235–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Jean, E. Grubka, M. Karafiat, et al., “P1-155—effets d’un entraînement en endurance ciblé par la calorimétrie à l’effort chez des diabétiques de type 2,” Annales d’Endocrinologie, vol. 67, no. 5, p. 462, 2006.
  23. A.-J. Romain, J. Attal, A. Hermès et al., “Effects of endurance training targetd at the LIPOXmax in psychiatric patients treated by neuroleptics,” Science and Sports, vol. 24, no. 5, pp. 265–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. C. Venables and A. E. Jeukendrup, “Endurance training and obesity: effect on substrate metabolism and insulin sensitivity,” Medicine and Science in Sports and Exercise, vol. 40, no. 3, pp. 495–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Mogensen, B. F. Vind, K. Højlund, H. Beck-Nielsen, and K. Sahlin, “Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training,” Diabetes, Obesity and Metabolism, vol. 11, no. 9, pp. 874–883, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Elloumi, O. Ben Ounis, E. Makni, E. Van Praagh, Z. Tabka, and G. Lac, “Effect of individualized weight-loss programmes on adiponectin, leptin and resistin levels in obese adolescent boys,” Acta Paediatrica, International Journal of Paediatrics, vol. 98, no. 9, pp. 1487–1493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. O. B. Ounis, M. Elloumi, E. Makni et al., “Exercise improves the ApoB/ApoA-I ratio, a marker of the metabolic syndrome in obese children,” Acta Paediatrica, International Journal of Paediatrics, vol. 99, no. 11, pp. 1679–1685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Maurie, J.-F. Brun, E. Jean, A.-J. Romain, and J. Mercier, “Comparaison de deux modalités différentes d’activité physique (SWEET et Lipoxmax) chez des diabétiques de type 2,” Science & Sports, vol. 26, no. 2, pp. 92–96, 2011.
  29. T. Wu, X. Gao, M. Chen, and R. M. van Dam, “Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis: obesity management,” Obesity Reviews, vol. 10, no. 3, pp. 313–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Sahlin, M. Mogensen, M. Bagger, M. Fernström, and P. K. Pedersen, “The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise,” American Journal of Physiology, vol. 292, no. 1, pp. E223–E230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Ara, S. Larsen, B. Stallknecht et al., “Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans,” International Journal of Obesity, vol. 35, no. 1, pp. 99–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Nordby, B. Saltin, and J. W. Helge, “Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?” Scandinavian Journal of Medicine and Science in Sports, vol. 16, no. 3, pp. 209–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. “Guidelines for the rehabilitation of chronic obstructive pulmonary disease. French Language Society of Pneumology,” Revue des Maladies Respiratoires, vol. 22, no. 5, part 3, pp. 7S8–7S14, 2005.
  34. G. Vallet, S. Ahmaïdi, I. Serres et al., “Comparison of two training programmes in chronic airway limitation patients: standardized versus individualized protocols,” European Respiratory Journal, vol. 10, no. 1, pp. 114–122, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. C. L. Rochester, “Exercise training in chronic obstructive pulmonary disease,” Journal of Rehabilitation Research and Development, vol. 40, no. 5, pp. 59–80, 2003. View at Scopus
  36. M. Kunitomi, K. Takahashi, J. Wada et al., “Re-evaluation of exercise prescription for Japanese type 2 diabetic patients by ventilatory threshold,” Diabetes Research and Clinical Practice, vol. 50, no. 2, pp. 109–115, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. J.-F. Brun, S. Bordenave, J. Mercier, A. Jaussent, M. C. Picot, and C. Préfaut, “Cost-sparing effect of twice-weekly targeted endurance training in type 2 diabetics: a one-year controlled randomized trial,” Diabetes and Metabolism, vol. 34, no. 3, pp. 258–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. van Baak, “Exercise training and substrate utilisation in obesity,” International Journal of Obesity and Related Metabolic Disorders, vol. 23, supplement 3, pp. S11–S17, 1999.
  39. A. Pérez-Martin, E. Raynaud, and J. Mercier, “Insulin resistance and associated metabolic abnormalities in muscle: effects of exercise,” Obesity Reviews, vol. 2, no. 1, pp. 47–59, 2001. View at Scopus
  40. B. Strasser, A. Spreitzer, and P. Haber, “Fat loss depends on energy deficit only, independently of the method for weight loss,” Annals of Nutrition and Metabolism, vol. 51, no. 5, pp. 428–432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ohkawara, S. Tanaka, M. Miyachi, K. Ishikawa-Takata, and I. Tabata, “A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials,” International Journal of Obesity, vol. 31, no. 12, pp. 1786–1797, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. N. D. Barwell, D. Malkova, M. Leggate, and J. M. R. Gill, “Individual responsiveness to exercise-induced fat loss is associated with change in resting substrate utilization,” Metabolism, vol. 58, no. 9, pp. 1320–1328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Rosenkilde, P. Nordby, L. B. Nielsen, B. M. Stallknecht, and J. W. Helge, “Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men,” International Journal of Obesity, vol. 34, no. 5, pp. 871–877, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Hopkins, P. Caudwell, and C. Gibbons, “Fat oxidation during exercise is associated with medium-term exercise-induce fat loss,” Obesity Reviews, vol. 11, supplement 1, p. 183, 2010.
  45. P. Lavault, S. Deaux, A. J. Romain, C. Fédou, J. Mercier, and J. F. Brun, “Interest of quantification of muscle mass for interpreting exercise calorimetry,” Science and Sports, vol. 26, no. 2, pp. 88–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. N. A. King, P. P. Caudwell, M. Hopkins, J. R. Stubbs, E. Naslund, and J. Blundell, “dual-process action of exercise on appetite control: increase in orexigenic drive but improvement in meal-induced satiety,” American Journal of Clinical Nutrition, vol. 90, no. 4, pp. 921–927. View at Publisher · View at Google Scholar
  47. J. F. Brun, D. Malatesta, and A. Sartorio, “Maximal lipid oxidation during exercise: a target for individualizing endurance training in obesity and diabetes?” Journal of Endocrinological Investigation. In press. View at Publisher · View at Google Scholar
  48. S. Lazzer, C. Lafortuna, C. Busti, R. Galli, F. Agosti, and A. Sartorio, “Effects of low- and high-intensity exercise training on body composition and substrate metabolism in obese adolescents,” Journal of Endocrinological Investigation, vol. 34, no. 1, pp. 45–52, 2011. View at Publisher · View at Google Scholar · View at Scopus