About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 712435, 12 pages
http://dx.doi.org/10.1155/2012/712435
Review Article

Acute Sedentary Behaviour and Markers of Cardiometabolic Risk: A Systematic Review of Intervention Studies

1Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada K1H 8L1
2School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada K1N 6N5

Received 24 January 2012; Accepted 28 March 2012

Academic Editor: Maria Luz Fernandez

Copyright © 2012 Travis J. Saunders et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. B. Hu, T. Y. Li, G. A. Colditz, W. C. Willett, and J. E. Manson, “Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women,” Journal of the American Medical Association, vol. 289, no. 14, pp. 1785–1791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P. Rey-López, G. Vicente-Rodríguez, M. Biosca, and L. A. Moreno, “Sedentary behaviour and obesity development in children and adolescents,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 18, no. 3, pp. 242–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. I. Proper, A. S. Singh, W. Van Mechelen, and M. J. M. Chinapaw, “Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies,” American Journal of Preventive Medicine, vol. 40, no. 2, pp. 174–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. T. Katzmarzyk, T. S. Church, C. L. Craig, and C. Bouchard, “Sitting time and mortality from all causes, cardiovascular disease, and cancer,” Medicine and Science in Sports and Exercise, vol. 41, no. 5, pp. 998–1005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Stamatakis, M. Hamer, and D. W. Dunstan, “Screen-based entertainment time, all-cause mortality, and cardiovascular events: population-based study with ongoing mortality and hospital events follow-up,” Journal of the American College of Cardiology, vol. 57, no. 3, pp. 292–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Y. Warren, V. Barry, S. P. Hooker, X. Sui, T. S. Church, and S. N. Blair, “Sedentary behaviors increase risk of cardiovascular disease mortality in men,” Medicine and Science in Sports and Exercise, vol. 42, no. 5, pp. 879–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Lynch, “Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 11, pp. 2691–2709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Hamilton, D. G. Hamilton, and T. W. Zderic, “Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease,” Diabetes, vol. 56, no. 11, pp. 2655–2667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. Tremblay, R. C. Colley, T. J. Saunders, G. N. Healy, and N. Owen, “Physiological and health implications of a sedentary lifestyle,” Applied Physiology, Nutrition and Metabolism, vol. 35, no. 6, pp. 725–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. M. Hamburg, C. J. McMackin, A. L. Huang et al., “Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2650–2656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. B. R. Stephens, K. Granados, T. W. Zderic, M. T. Hamilton, and B. Braun, “Effects of 1 day of inactivity on insulin action in healthy men and women: interaction with energy intake,” Metabolism, vol. 60, no. 7, pp. 941–949, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Bey and M. T. Hamilton, “Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity,” Journal of Physiology, vol. 551, no. 2, pp. 673–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Wilkes and A. Bonen, “Reduced insulin-stimulated glucose transport in denervated muscle is associated with impaired Akt-α activation,” American Journal of Physiology, vol. 279, no. 4, pp. E912–E919, 2000. View at Scopus
  14. L. Coderre, M. M. Monfar, K. S. Chen et al., “Alteration in the expression of GLUT-1 and GLUT-4 protein and messenger RNA levels in denervated rat muscles,” Endocrinology, vol. 131, no. 4, pp. 1821–1825, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. M. T. Hamilton, G. N. Healy, D. W. Dunstan, et al., “Too little exercise and too much sitting: inactivity physiology and the need for new recommendations on sedentary behavior,” Current Cardiovascular Risk Reports, vol. 2, pp. 292–298, 2008.
  16. A. Bergouignan, F. Rudwill, C. Simon, and S. Blanc, “Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies,” Journal of Applied Physiology, vol. 111, pp. 1201–1210, 2011.
  17. S. H. Downs and N. Black, “The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions,” Journal of Epidemiology and Community Health, vol. 52, no. 6, pp. 377–384, 1998. View at Scopus
  18. G. H. Guyatt, A. D. Oxman, G. E. Vist, R. Kunz, Y. Falck-Ytter, and H. J. Schünemann, “GRADE: what is "quality of evidence" and why is it important to clinicians?” British Medical Journal, vol. 336, no. 7651, pp. 995–998, 2008. View at Scopus
  19. E. A. Richter, B. Kiens, M. Mizuno, and S. Strange, “Insulin action in human thighs after one-legged immobilization,” Journal of Applied Physiology, vol. 67, no. 1, pp. 19–23, 1989. View at Scopus
  20. V. E. Katkov, V. V. Chestukhin, and L. I. Shefter, “Short-term immobilization of healthy men: right ventricular function and metabolism during graded exercise,” Cor et Vasa, vol. 21, no. 1, pp. 61–70, 1979. View at Scopus
  21. A. C. Alibegovic, M. P. Sonne, L. Højbjerre et al., “The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest,” Diabetes, vol. 59, no. 4, pp. 836–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Duran-Valdez, D. G. De Serna, S. Schneider, F. Amorim, M. Burge, and D. S. Schade, “Metabolic effects of 2 days of strict bed rest,” Endocrine Practice, vol. 14, no. 5, pp. 564–569, 2008. View at Scopus
  23. S. Blanc, S. Normand, C. Pachiaudi, J. O. Fortrat, M. Laville, and C. Gharib, “Fuel homeostasis during physical inactivity induced by bed rest,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 6, pp. 2223–2233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Smorawiński, H. Kaciuba-Uściłko, K. Nazar et al., “Effects of three-day bed rest on metabolic, hormonal and circulatory responses to an oral glucose load in endurance or strength trained athletes and untrained subjects,” Journal of Physiology and Pharmacology, vol. 51, no. 2, pp. 279–289, 2000. View at Scopus
  25. P. Barbe, J. Galitzky, C. Thalamas et al., “Increase in epinephrine-induced responsiveness during microgravity simulated by head-down bed rest in humans,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1614–1620, 1999. View at Scopus
  26. J. Nygren, A. Thorell, S. Efendic, K. S. Nair, and O. Ljungqvist, “Site of insulin resistance after surgery: the contribution of hypocaloric nutrition and bed rest,” Clinical Science, vol. 93, no. 2, pp. 137–146, 1997. View at Scopus
  27. K. J. Mikines, F. Dela, B. Tronier, and H. Galbo, “Effect of 7 days of bed rest on dose-response relation between plasma glucose and insulin secretion,” American Journal of Physiology, vol. 257, no. 1, pp. E43–E48, 1989. View at Scopus
  28. C. A. Stuart, R. E. Shangraw, M. J. Prince, E. J. Peters, and R. R. Wolfe, “Bed-rest-induced insulin resistance occurs primarily in muscle,” Metabolism, vol. 37, no. 8, pp. 802–806, 1988. View at Scopus
  29. R. L. Lipman, P. Raskin, T. Love, J. Triebwasser, F. R. Lecocq, and J. J. Schnure, “Glucose intolerance during decreased physical activity in man,” Diabetes, vol. 21, no. 2, pp. 101–107, 1972. View at Scopus
  30. C. Moro, F. Pillard, I. De Glisezinski et al., “Atrial natriuretic peptide contribution to lipid mobilization and utilization during head-down bed rest in humans,” American Journal of Physiology, vol. 293, no. 2, pp. R612–R617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. C. Alibegovic, L. Højbjerre, M. P. Sonne et al., “Impact of 9 days of bed rest on hepatic and peripheral insulin action, insulin secretion, and whole-body lipolysis in healthy young male offspring of patients with type 2 diabetes,” Diabetes, vol. 58, no. 12, pp. 2749–2756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Kanikowska, M. Sato, S. Iwase et al., “Leptin and ghrelin levels in humans during physical inactivity induced by head-down bed rest,” Aviation Space and Environmental Medicine, vol. 81, no. 4, pp. 383–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. G. Zorbas, V. L. Yarullin, S. D. Denogradov, and V. B. Afonin, “Plasma volume and biochemical changes in athletes during bed rest chronic hyperhydration,” Acta Astronautica, vol. 45, no. 12, pp. 747–754, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. N. M. Navasiolava, F. Dignat-George, F. Sabatier et al., “Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers,” American Journal of Physiology, vol. 299, no. 2, pp. H248–H256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. B. Dolkas and J. E. Greenleaf, “Insulin and glucose responses during bed rest with isotonic and isometric exercise,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 43, no. 6, pp. 1033–1038, 1977. View at Scopus
  36. L. Ksinantova, J. Koska, R. Kvetnansky, M. Marko, D. Hamar, and M. Vigas, “Effect of simulated microgravity on endocrine response to insulin-induced hypoglycemia in physically fit men,” Hormone and Metabolic Research, vol. 34, no. 3, pp. 155–159, 2002. View at Scopus
  37. Y. Y. Yaroshenko, Y. G. Zorban, N. K. Kuznetsov, A. G. Kakurin, V. K. Popov, and V. L. Yazulin, “Changes in thyroid hormones and lipids in endurance trained volunteers during acute and rigorous bed rest conditions,” Wiener Klinische Wochenschrift, vol. 110, no. 6, pp. 225–231, 1998. View at Scopus
  38. R. Yanagibori, Y. Suzuki, K. Kawakubo et al., “The effects of 20 days bed rest on serum lipids and lipoprotein concentrations in healthy young subjects,” Journal of Gravitational Physiology, vol. 4, no. 1, pp. S82–S90, 1997. View at Scopus
  39. D. Dunstan, B. A. Kingwell, R Larsen, et al., “Breaking up prolonged sitting reduces postprandial glucose and insulin responses,” Diabetes Care, vol. 35, no. 5, pp. 976–983, 2012.
  40. K. J. Mikines, E. A. Richter, F. Dela, and H. Galbo, “Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body,” Journal of Applied Physiology, vol. 70, no. 3, pp. 1245–1254, 1991. View at Scopus
  41. K. Kiilerich, S. Ringholm, and R. S. Bienso, “Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest,” Journal of Applied Physiology, vol. 111, pp. 751–757, 2011.
  42. H. Nygaard, S. E. Tomten, and A. T. Høstmark, “Slow postmeal walking reduces postprandial glycemia in middle-aged women,” Applied Physiology, Nutrition and Metabolism, vol. 34, no. 6, pp. 1087–1092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. R. C. Colley, D. Garriguet, I. Janssen, C. L. Craig, J. Clarke, and M. S. Tremblay, “Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey,” Health Reports, vol. 22, no. 1, pp. 7–14, 2011. View at Scopus
  44. R. C. Colley, D. Garriguet, I. Janssen, C. L. Craig, J. Clarke, and M. S. Tremblay, “Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey,” Health Reports, vol. 22, no. 1, pp. 15–23, 2011. View at Scopus
  45. V. Carson and I. Janssen, “Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study,” BMC Public Health, vol. 11, article 274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. C. E. Matthews, K. Y. Chen, P. S. Freedson et al., “Amount of time spent in sedentary behaviors in the United States, 2003-2004,” American Journal of Epidemiology, vol. 167, no. 7, pp. 875–881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Blanc, S. Normand, C. Pachiaudi, M. Duvareille, and C. Gharib, “Leptin responses to physical inactivity induced by simulated weightlessness,” American Journal of Physiology, vol. 279, no. 3, pp. R891–R898, 2000. View at Scopus
  48. J. Smorawinski, H. Kaciuba-Uscilko, K. Nazar, E. Kaminska, P. Korszun, and J. E. Greenleaf, “Comparison of changes in glucose tolerance and insulin secretion induced by three-day bed rest in sedentary subjects and endurance or strength trained athletes,” Journal of Gravitational Physiology, vol. 5, no. 1, pp. P103–P104, 1998. View at Scopus
  49. J. Smorawinski, P. Kubala, H. Kaciuba-Uociako, K. Nazar, E. Titow-Stupnicka, and J. E. Greenleaf, “Effects of three day bed-rest on circulatory, metabolic and hormonal responses to oral glucose load in endurance trained athletes and untrained subjects,” Journal of Gravitational Physiology, vol. 3, no. 2, pp. 44–45, 1996. View at Scopus