About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 802924, 9 pages
http://dx.doi.org/10.1155/2012/802924
Clinical Study

Impact of Ramadan Intermittent Fasting on Oxidative Stress Measured by Urinary 15- -Isoprostane

1Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
2Department of Nutrition, Faculty of Pharmacy and Medical Sciences, Petra University, P.O. Box 961343, Amman, Jordan
3Department of Clinical Pharmacy and Biopharmaceutics, Faculty of Pharmacy, The University of Jordan, P.O. Box 11942, Amman, Jordan
4Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, P.O. Box 591504, Zarqa, Jordan

Received 14 July 2012; Revised 5 September 2012; Accepted 23 September 2012

Academic Editor: Heiner Boeing

Copyright © 2012 Mo'ez Al-Islam Ezzat Faris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Montuschi, P. J. Barnes, and L. J. Roberts, “Isoprostanes: markers and mediators of oxidative stress,” The FASEB Journal, vol. 18, no. 15, pp. 1791–1800, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Sakano, D. H. Wang, N. Takahashi et al., “Oxidative stress biomarkers and lifestyles in Japanese healthy people,” Journal of Clinical Biochemistry and Nutrition, vol. 44, no. 2, pp. 185–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Morrow and L. J. Roberts, “The isoprostanes: their role as an index of oxidant stress status in human pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 12, pp. S25–S30, 2002. View at Scopus
  4. C. L. Laffer, R. J. Bolterman, J. C. Romero, and F. Elijovich, “Effect of salt on isoprostanes in salt-sensitive essential hypertension,” Hypertension, vol. 47, no. 3, pp. 434–440, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Morrow, K. E. Hill, R. F. Burk, T. M. Nammour, K. F. Badr, and L. J. Roberts, “A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 23, pp. 9383–9387, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. J. D. Morrow, J. A. Awad, H. J. Boss, I. A. Blair, and L. J. Roberts, “Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 22, pp. 10721–10725, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Morrow and L. J. Roberts, “Quantification of noncyclooxygenase derived prostanoids as a marker of oxidative stress,” Free Radical Biology and Medicine, vol. 10, no. 3-4, pp. 195–200, 1991.
  8. J. D. Morrow, B. Frei, A. W. Longmire et al., “Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers—smoking as a cause of oxidative damage,” The New England Journal of Medicine, vol. 332, no. 18, pp. 1198–1203, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. L. J. Roberts and J. D. Morrow, “Measurement of F2-isoprostanes as an index of oxidative stress in vivo,” Free Radical Biology and Medicine, vol. 28, no. 4, pp. 505–513, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Rossner, M. D. Gammon, M. B. Terry et al., “Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 4, pp. 639–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Martin, M. P. Mattson, and S. Maudsley, “Caloric restriction and intermittent fasting: two potential diets for successful brain aging,” Ageing Research Reviews, vol. 5, no. 3, pp. 332–353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. A. Varady and M. K. Hellerstein, “Alternate-day fasting and chronic disease prevention: a review of human and animal trials,” American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 7–13, 2007. View at Scopus
  13. K. H. Lee, H. Bartsch, J. Nair et al., “Effect of short-term fasting on urinary excretion of primary lipid peroxidation products and on markers of oxidative DNA damage in healthy women,” Carcinogenesis, vol. 27, no. 7, pp. 1398–1403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. F. B. Aksungar, A. Eren, S. Ure, O. Teskin, and G. Ates, “Effects of intermittent fasting on serum lipid levels, coagulation status and plasma homocysteine levels,” Annals of Nutrition and Metabolism, vol. 49, no. 2, pp. 77–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. El Ati, C. Beji, and J. Danguir, “Increased fat oxidation during Ramadan fasting in healthy women: an adaptative mechanism for body-weight maintenance,” American Journal of Clinical Nutrition, vol. 62, no. 2, pp. 302–307, 1995. View at Scopus
  16. W. H. Ibrahim, H. M. Habib, A. H. Jarrar, and S. A. Al Baz, “Effect of Ramadan fasting on markers of oxidative stress and serum biochemical markers of cellular damage in healthy subjects,” Annals of Nutrition and Metabolism, vol. 53, no. 3-4, pp. 175–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Y. Lamri-Senhadji, B. El Kebir, J. Belleville, and M. Bouchenak, “Assessment of dietary consumption and time-course of changes in serum lipids and lipoproteins before, during and after Ramadan in young Algerian adults,” Singapore Medical Journal, vol. 50, no. 3, pp. 288–294, 2009. View at Scopus
  18. V. Ziaee, M. Razaei, Z. Ahmadinejad et al., “The changes of metabolic profile and weight during Ramadan fasting,” Singapore Medical Journal, vol. 47, no. 5, pp. 409–414, 2006. View at Scopus
  19. K. M. S. Mansi, “Study the effects of Ramadan fasting on the serum glucose and lipid profile among healthy Jordanian students,” American Journal of Applied Sciences, vol. 4, no. 8, pp. 565–569, 2007. View at Scopus
  20. H. M. Al-Hourani and M. F. Atoum, “Body composition, nutrient intake and physical activity patterns in young women during Ramadan,” Singapore Medical Journal, vol. 48, no. 10, pp. 906–910, 2007. View at Scopus
  21. J. Skrha, “Caloric restriction and oxidative stress,” in Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling, T. Farooqui and A. A. Farooqui, Eds., Wiley-BlackwellJohn Wiley & Sons, 1st edition, 2012.
  22. B. Hansel, P. Giral, E. Nobecourt et al., “Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 4963–4971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Deurenberg, M. Deurenberg-Yap, and S. Guricci, “Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship,” Obesity Reviews, vol. 3, no. 3, pp. 141–146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. F. Keaney, M. G. Larson, R. S. Vasan et al., “Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 434–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Devaraj, S. V. Hirany, R. F. Burk, and I. Jialal, “Divergence between LDL oxidative susceptibility and urinary F2-isoprostanes as measures of oxidative stress in type 2 diabetes,” Clinical Chemistry, vol. 47, no. 11, pp. 1974–1979, 2001. View at Scopus
  26. D. L. Fabiny and G. Ertingshausen, “Automated reaction-rate method for determination of serum creatinine with the CentrifiChem,” Clinical Chemistry, vol. 17, no. 8, pp. 696–700, 1971. View at Scopus
  27. M. H. Hallak and M. Z. A. Nomani, “Body weight loss and changes in blood lipid levels in normal men on hypocaloric diets during Ramadan fasting,” American Journal of Clinical Nutrition, vol. 48, no. 5, pp. 1197–1210, 1988. View at Scopus
  28. L. Dewanti, C. Watanabe, Sulistiawati, and R. Ohtsuka, “Unexpected changes in blood pressure and hematological parameters among fasting and nonfasting workers during Ramadan in Indonesia,” European Journal of Clinical Nutrition, vol. 60, no. 7, pp. 877–881, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Maislos, N. Khamaysi, A. Assali, Y. Abou-Rabiah, I. Zvili, and S. Shany, “Marked increase in plasma high-density-lipoprotein cholesterol after prolonged fasting during Ramadan,” American Journal of Clinical Nutrition, vol. 57, no. 5, pp. 640–642, 1993. View at Scopus
  30. G. Frost and S. Pirani, “Meal frequency and nutritional intake during Ramadan: a pilot study,” Human Nutrition, vol. 41, no. 1, pp. 47–50, 1987. View at Scopus
  31. A. Yucel, B. Degirmenci, M. Acar, R. Albayrak, and A. Haktanir, “The effect of fasting month of Ramadan on the abdominal fat distribution: assessment by computed tomography,” Tohoku Journal of Experimental Medicine, vol. 204, no. 3, pp. 179–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. W. G. Abbott, B. V. Howard, L. Christin, et al., “Short-term energy balance: relationship with protein, carbohydrate, and fat balances,” American Journal of Physiology-Endocrinology, vol. 1, no. 255, pp. E332–E337, 1988.
  33. H. M. Al Hourani, M. F. Atoum, S. kel, et al., “Effects of Ramadan fasting on some hematological and biochemical parameters,” Jordan Journal of Biological Sciences, vol. 2, no. 3, pp. 103–108, 2009.
  34. M. A. I. E. Faris, S. Kacimi, R. Al-Kurd, et al., “Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects,” Nutrition Research. In press.
  35. A. Adlouni, N. Ghalim, A. Benslimane, J. M. Lecerf, and R. Saïle, “Fasting during Ramadan induces a marked increase in high-density lipoprotein cholesterol and decrease in low-density lipoprotein cholesterol,” Annals of Nutrition and Metabolism, vol. 41, no. 4, pp. 242–249, 1997. View at Scopus
  36. A. Barkia, K. Mohamed, M. Smaoui, et al., “Change of diet, plasma lipids, lipoproteins, and fatty acids during Ramadan: a controversial association of the considered Ramadan model with atherosclerosis risk,” Journal of Health, Population and Nutrition, vol. 29, no. 5, pp. 486–493, 2011.
  37. D. Il'yasova, J. D. Morrow, and L. E. Wagenknecht, “Urinary F2-isoprostanes are not associated with increased risk of type 2 diabetes,” Obesity Research, vol. 13, no. 9, pp. 1638–1644, 2005. View at Scopus
  38. T. Ide, H. Tsutsui, N. Ohashi et al., “Greater oxidative stress in healthy young men compared with premenopausal women,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 3, pp. 438–442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Block, M. Dietrich, E. P. Norkus et al., “Factors associated with oxidative stress in human populations,” American Journal of Epidemiology, vol. 156, no. 3, pp. 274–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. A. W. Taylor, R. S. Bruno, and M. G. Traber, “Women and smokers have elevated urinary F2-isoprostane metabolites: a novel extraction and LC-MS methodology,” Lipids, vol. 43, no. 10, pp. 925–936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. I. Frisard, A. Broussard, S. S. Davies et al., “Aging, resting metabolic rate, and oxidative damage: results from the Louisiana healthy aging study,” Journals of Gerontology A, vol. 62, no. 7, pp. 752–759, 2007. View at Scopus
  42. M. Dietrich, G. Block, M. Hudes et al., “Antioxidant supplementation decreases lipid peroxidation biomarker F2-isoprostanes in plasma of smokers,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 1, pp. 7–13, 2002. View at Scopus
  43. H. Urakawa, A. Katsuki, Y. Sumida et al., “Oxidative stress is associated with adiposity and insulin resistance in men,” The Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 10, pp. 4673–4676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Couillard, G. Ruel, W. R. Archer et al., “Circulating levels of oxidative stress markers and endothelial adhesion molecules in men with abdominal obesity,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 12, pp. 6454–6459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Al-Menabbawy, M. Sallam, S. Taha, H. Mottawie, and A. Ibrahiem, “Obesity, sedentary lifestyle and oxidative stress among young adolescent,” Journal of Medical Sciences, vol. 6, no. 6, pp. 956–961, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Davì, M. T. Guagnano, G. Ciabattoni et al., “Platelet activation in obese women: role of inflammation and oxidant stress,” The Journal of the American Medical Association, vol. 288, no. 16, pp. 2008–2014, 2002. View at Scopus
  47. C. Weyer, R. E. Pratley, A. D. Salbe, C. Bogardus, E. Ravussin, and P. A. Tataranni, “Energy expenditure, fat oxidation, and body weight regulation: a study of metabolic adaptation to long-term weight change,” The Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 3, pp. 1087–1094, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. A. R. Frisancho, “Reduced rate of fat oxidation: a metabolic pathway to obesity in the developing nations,” American Journal of Human Biology, vol. 15, no. 4, pp. 522–532, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. S. K. Powers and M. J. Jackson, “Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production,” Physiological Reviews, vol. 88, no. 4, pp. 1243–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Schutz, A. Tremblay, R. L. Weinsier, and K. M. Nelson, “Role of fat oxidation in the long-term stabilization of body weight in obese women,” American Journal of Clinical Nutrition, vol. 55, no. 3, pp. 670–674, 1992. View at Scopus
  51. J. B. Johnson, W. Summer, R. G. Cutler et al., “Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma,” Free Radical Biology and Medicine, vol. 42, no. 5, pp. 665–674, 2007. View at Publisher · View at Google Scholar · View at Scopus