About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 930364, 7 pages
http://dx.doi.org/10.1155/2012/930364
Research Article

Maternal Hyperglycemia Disrupts Histone 3 Lysine 36 Trimethylation of the IGF-1 Gene

1Division of Neonatology, Department of Pediatrics, University of Utah, 295 Chipeta Way, Salt Lake City, UT 84108, USA
2Department of Pediatrics, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA

Received 1 December 2011; Accepted 14 January 2012

Academic Editor: Simon C. Langley-Evans

Copyright © 2012 Erin K. Zinkhan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In utero environmental adaptation may predispose to lifelong morbidity. Organisms fine-tune gene expression to achieve environmental adaptation by epigenetic alterations of histone markers of gene accessibility. One example of epigenetics is how uteroplacental insufficiency-induced intrauterine growth restriction (IUGR), which predisposes to adult onset insulin resistance, decreases postnatal IGF-1 mRNA variants and the gene elongation mark histone 3 trimethylation of lysine 36 of the IGF-1 gene (H3Me3K36). Limitations in the study of epigenetics exist due to lack of a primary transgenic epigenetic model. Therefore we examined the epigenetic profile of insulin-like growth factor 1 (IGF-1) in a well-characterized rat model of maternal hyperglycemia to determine if the epigenetic profile of IGF-1 is conserved in disparate models of in utero adaptation. We hypothesized that maternal hyperglycemia would increase IGF-1 mRNA variants and H3Me3K36. However maternal hyperglycemia decreased hepatic IGF-1 mRNA variants and H3Me3K36. This finding is intriguing given that despite different prenatal insults and growth, both maternal hyperglycemia and IUGR predispose to adult onset insulin resistance. We speculate that H3Me3K36 of the IGF-1 gene is sensitive to the glucose level of the prenatal environment, with resultant alteration of IGF-1 mRNA expression and ultimately vulnerability to adult onset insulin resistance.