About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2013 (2013), Article ID 202534, 12 pages
http://dx.doi.org/10.1155/2013/202534
Research Article

Formation of Short-Chain Fatty Acids, Excretion of Anthocyanins, and Microbial Diversity in Rats Fed Blackcurrants, Blackberries, and Raspberries

1Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, P.O. Box 124, 221 00 Lund, Sweden
2Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, 221 00 Lund, Sweden

Received 15 March 2013; Revised 21 May 2013; Accepted 6 June 2013

Academic Editor: Yiannis Kourkoutas

Copyright © 2013 Greta Jakobsdottir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine.