About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2013 (2013), Article ID 202534, 12 pages
http://dx.doi.org/10.1155/2013/202534
Research Article

Formation of Short-Chain Fatty Acids, Excretion of Anthocyanins, and Microbial Diversity in Rats Fed Blackcurrants, Blackberries, and Raspberries

1Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, P.O. Box 124, 221 00 Lund, Sweden
2Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, 221 00 Lund, Sweden

Received 15 March 2013; Revised 21 May 2013; Accepted 6 June 2013

Academic Editor: Yiannis Kourkoutas

Copyright © 2013 Greta Jakobsdottir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. R. Määttä-Riihinen, A. Kamal-Eldin, P. H. Mattila, A. M. González-Paramás, and R. Törrönen, “Distribution and contents of phenolic compounds in eighteen scandinavian berry species,” Journal of Agricultural and Food Chemistry, vol. 52, no. 14, pp. 4477–4486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Borges, A. Degeneve, W. Mullen, and A. Crozier, “Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries,” Journal of Agricultural and Food Chemistry, vol. 58, no. 7, pp. 3901–3909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Puupponen-Pimiä, L. Nohynek, C. Meier et al., “Antimicrobial properties of phenolic compounds from berries,” Journal of Applied Microbiology, vol. 90, no. 4, pp. 494–507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Wang, G. Cao, and R. L. Prior, “Oxygen radical absorbing capacity of anthocyanins,” Journal of Agricultural and Food Chemistry, vol. 45, no. 2, pp. 304–309, 1997. View at Scopus
  5. A. Basu, M. Rhone, and T. J. Lyons, “Berries: emerging impact on cardiovascular health,” Nutrition Reviews, vol. 68, no. 3, pp. 168–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. W. Morton, R. A.-A. Caccetta, I. B. Puddey, and K. D. Croft, “Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 3, pp. 152–159, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998. View at Scopus
  8. J. W. Anderson, P. Baird, R. H. Davis Jr. et al., “Health benefits of dietary fiber,” Nutrition Reviews, vol. 67, no. 4, pp. 188–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Wong and D. J. Jenkins, “Carbohydrate digestibility and metabolic effects,” Journal of Nutrition, vol. 137, no. 11, supplement, pp. 2539S–2546S, 2007.
  10. N. I. McNeil, J. H. Cummings, and W. P. T. James, “Short chain fatty acid absorption by the human large intestine,” Gut, vol. 19, no. 9, pp. 819–822, 1978. View at Scopus
  11. J. M. W. Wong, R. De Souza, C. W. C. Kendall, A. Emam, and D. J. A. Jenkins, “Colonic health: fermentation and short chain fatty acids,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 235–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. I. Cook and J. H. Sellin, “Review article: short chain fatty acids in health and disease,” Alimentary Pharmacology and Therapeutics, vol. 12, no. 6, pp. 499–507, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Cummings, M. J. Hill, and E. S. Bone, “The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine,” American Journal of Clinical Nutrition, vol. 32, no. 10, pp. 2094–2101, 1979. View at Scopus
  14. C. Bränning, Å. Håkansson, S. Ahrné, B. Jeppsson, G. Molin, and M. Nyman, “Blueberry husks and multi-strain probiotics affect colonic fermentation in rats,” British Journal of Nutrition, vol. 101, no. 6, pp. 859–870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. E. Bach Knudsen, A. Serena, N. Canibe, and K. S. Juntunen, “New insight into butyrate metabolism,” Proceedings of the Nutrition Society, vol. 62, no. 1, pp. 81–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. T. Macfarlane and S. Macfarlane, “Bacteria, colonic fermentation, and gastrointestinal health,” Journal of AOAC International, vol. 95, no. 1, pp. 50–60, 2012. View at Scopus
  17. J.-P. Segain, J.-P. Galmiche, D. Raingeard De La Blétière et al., “Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease,” Gut, vol. 47, no. 3, pp. 397–403, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Rosignolli, R. Fabianni, A. De Bartolomeo et al., “Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells,” Carcinogenesis, vol. 22, no. 10, pp. 1675–1680, 2001. View at Scopus
  19. I. A. Finnie, A. D. Dwarakanath, B. A. Taylor, and J. M. Rhodes, “Colonic mucin synthesis is increased by sodium butyrate,” Gut, vol. 36, no. 1, pp. 93–99, 1995. View at Scopus
  20. W. Scheppach, H. P. Bartram, and F. Richter, “Role of short-chain fatty acids in the prevention of colorectal cancer,” European Journal of Cancer Part A, vol. 31, no. 7-8, pp. 1077–1080, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Topping, “Cereal complex carbohydrates and their contribution to human health,” Journal of Cereal Science, vol. 46, no. 3, pp. 220–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Asano and R. S. McLeod, “Dietary fibre for the prevention of colorectal adenomas and carcinomas,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD003430, 2002. View at Scopus
  23. M. O. Weickert and A. F. H. Pfeiffer, “Metabolic effects of dietary fiber consumption and prevention of diabetes,” Journal of Nutrition, vol. 138, no. 3, pp. 439–442, 2008. View at Scopus
  24. D. J. Rose, M. T. DeMeo, A. Keshavarzian, and B. R. Hamaker, “Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern,” Nutrition Reviews, vol. 65, no. 2, pp. 51–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Molin, “Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 380S–385S, 2001. View at Scopus
  26. G. Molin, Lactobacillus Plantarum HEAL 19, Probi, Lund, Sweden, 2013.
  27. N. Osman, D. Adawi, S. Ahrné, B. Jeppsson, and G. Molin, “Probiotics and blueberry attenuate the severity of dextran sulfate sodium (DSS)-induced colitis,” Digestive Diseases and Sciences, vol. 53, no. 9, pp. 2464–2473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Rask, I. Adlerberth, A. Berggren, et al., “Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli,” Clinical and Experimental Immunology, vol. 172, no. 2, pp. 321–332, 2013.
  29. M. Nyman and N. G. Asp, “Fermentation of dietary fibre components in the rat intestinal tract,” British Journal of Nutrition, vol. 47, no. 3, pp. 357–366, 1982. View at Scopus
  30. I. Bjorck, E. M. Nyman, B. Pedersen, et al., “Formation of enzyme resistant starch during autoclaving of wheat starch: studies in vitro and in vivo,” Journal of Cereal Science, vol. 6, no. 2, pp. 159–172, 1987.
  31. H. Hilz, E. J. Bakx, H. A. Schols, and A. G. J. Voragen, “Cell wall polysaccharides in black currants and bilberries—characterisation in berries, juice, and press cake,” Carbohydrate Polymers, vol. 59, no. 4, pp. 477–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Zhao, J.-F. Liu, M. Nyman, and J. Å. Jönsson, “Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography,” Journal of Chromatography B, vol. 846, no. 1-2, pp. 202–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Theander, P. Aman, E. Westerlund, R. Andersson, and D. Pettersson, “Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): collaborative study,” Journal of AOAC International, vol. 78, no. 4, pp. 1030–1044, 1995. View at Scopus
  34. G. Zhao, M. Nyman, and J. Å. Jönsson, “Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography,” Biomedical Chromatography, vol. 20, no. 8, pp. 674–682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Määttä, A. Kamal-Eldin, and R. Törrönen, “Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.),” Antioxidants and Redox Signaling, vol. 3, no. 6, pp. 981–993, 2001. View at Scopus
  36. K. Ogawa, H. Sakakibara, R. Iwata et al., “Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries,” Journal of Agricultural and Food Chemistry, vol. 56, no. 12, pp. 4457–4462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. U. Axling, C. Olsson, J. Xu, et al., “Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice,” Nutrition and Metabolism, vol. 9, no. 1, p. 105, 2012.
  38. Å. M. Henningsson, I. M. E. Björck, and E. M. G. L. Nyman, “Combinations of indigestible carbohydrates affect short-chain fatty acid formation in the hindgut of rats,” Journal of Nutrition, vol. 132, no. 10, pp. 3098–3104, 2002. View at Scopus
  39. T. C. Rideout, S. V. Harding, P. J. H. Jones, and M. Z. Fan, “Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities,” Vascular Health and Risk Management, vol. 4, no. 5, pp. 1023–1033, 2008. View at Scopus
  40. A. Nilsson, K. Radeborg, and I. Bjorck, “Effects on cognitive performance of modulating the postprandial blood glucose profile at breakfast,” European Journal of Clinical Nutrition, vol. 66, no. 9, pp. 1039–1043, 2012.
  41. A. Lazaridou and C. G. Biliaderis, “Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects,” Journal of Cereal Science, vol. 46, no. 2, pp. 101–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Immerstrand, Cholesterol-lowering properties of oats: effects of processing and the role of oat components [Dissertation], Lund University, 2010.
  43. T. Immerstrand, K. E. Andersson, C. Wange et al., “Effects of oat bran, processed to different molecular weights of beta;-glucan, on plasma lipids and caecal formation of SCFA in mice,” British Journal of Nutrition, vol. 104, no. 3, pp. 364–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Annison and D. L. Topping, “Nutritional role of resistant starch: chemical structure vs physiological function,” Annual Review of Nutrition, vol. 14, pp. 297–320, 1994. View at Scopus
  45. G. M. Wyatt, N. Horn, J. M. Gee, and I. T. Johnson, “Intestinal microflora and gastrointestinal adaptation in the rat in response to non-digestible dietary polysaccharides,” British Journal of Nutrition, vol. 60, no. 2, pp. 197–207, 1988. View at Scopus
  46. M. Å. Henningsson, Content and distribution of short-chain fatty acids in the hindgut of rats fed various sources of indigestible carbohydrates [Dissertation], Lund University, 2002.
  47. P. J. Turnbaugh, M. Hamady, T. Yatsunenko et al., “A core gut microbiome in obese and lean twins,” Nature, vol. 457, no. 7228, pp. 480–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. L. K. Ursell, J. C. Clemente, J. R. Rideout, D. Gevers, J. G. Caporaso, and R. Knight, “The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites,” Journal of Allergy and Clinical Immunology, vol. 129, no. 5, pp. 1204–1208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. Å. Håkansson, C. Bränning, G. Molin et al., “Blueberry husks and probiotics attenuate colorectal inflammation and oncogenesis, and liver injuries in rats exposed to cycling DSS-treatment,” PLoS ONE, vol. 7, no. 3, Article ID e33510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Osawa, K. Kuroiso, S. Goto, and A. Shimizu, “Isolation of tannin-degrading lactobacilli from humans and fermented foods,” Applied and Environmental Microbiology, vol. 66, no. 7, pp. 3093–3097, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Serrano, R. Puupponen-Pimiä, A. Dauer, A.-M. Aura, and F. Saura-Calixto, “Tannins: current knowledge of food sources, intake, bioavailability and biological effects,” Molecular Nutrition and Food Research, vol. 53, no. 2, pp. S310–S329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Puupponen-Pimiä, L. Nohynek, S. Hartmann-Schmidlin et al., “Berry phenolics selectively inhibit the growth of intestinal pathogens,” Journal of Applied Microbiology, vol. 98, no. 4, pp. 991–1000, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. N. P. Seeram, “Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease,” Journal of Agricultural and Food Chemistry, vol. 56, no. 3, pp. 627–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Heinonen, “Antioxidant activity and antimicrobial effect of berry phenolics—a Finnish perspective,” Molecular Nutrition and Food Research, vol. 51, no. 6, pp. 684–691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Siriwoharn, R. E. Wrolstad, C. E. Finn, and C. B. Pereira, “Influence of cultivar, maturity, and sampling on blackberry (Rubus L. hybrids) anthocyanins, polyphenolics, and antioxidant properties,” Journal of Agricultural and Food Chemistry, vol. 52, no. 26, pp. 8021–8030, 2004. View at Scopus
  56. A. Scalbert, “Antimicrobial properties of tannins,” Phytochemistry, vol. 30, no. 12, pp. 3875–3883, 1991. View at Scopus
  57. T. De Bruyne, L. Pieters, H. Deelstra, and A. Vlietinck, “Condensed vegetable tannins: biodiversity in structure and biological activities,” Biochemical Systematics and Ecology, vol. 27, no. 4, pp. 445–459, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Jakesevic, K. Aaby, G.-I. A. Borge, B. Jeppsson, S. Ahrné, and G. Molin, “Antioxidative protection of dietary bilberry, chokeberry and Lactobacillus plantarum HEAL19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion,” BMC Complementary and Alternative Medicine, vol. 11, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. He and M. M. Giusti, “Anthocyanins: natural colorants with health-promoting properties,” Annual Review of Food Science and Technology, vol. 1, pp. 163–187, 2010. View at Scopus
  60. L. Utsal, V. Tillmann, M. Zilmer, et al., “Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-gamma levels in 10- to 11-year-old boys with increased BMI,” Hormone Research in Paediatrics, vol. 78, no. 1, pp. 31–39, 2012.
  61. Z. H. Liu, L. L. Chen, X. L. Deng, et al., “Methylation status of CpG sites in the MCP-1 promoter is correlated to serum MCP-1 in Type 2 diabetes,” Journal of Endocrinological Investigation, vol. 35, no. 6, pp. 585–589, 2012.