About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2013 (2013), Article ID 486186, 19 pages
http://dx.doi.org/10.1155/2013/486186
Review Article

Vitamin B12, Folate, Homocysteine, and Bone Health in Adults and Elderly People: A Systematic Review with Meta-Analyses

1Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
2Department of Human Nutrition, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02 776 Warsaw, Poland
3Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine BT52 1SA, UK

Received 4 October 2012; Accepted 23 November 2012

Academic Editor: Christel Lamberg-Allardt

Copyright © 2013 J. P. van Wijngaarden et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis,” The American Journal of Medicine, vol. 94, no. 6, pp. 646–650, 1993.
  2. J. A. Kanis and O. Johnell, “Requirements for DXA for the management of osteoporosis in Europe,” Osteoporosis International, vol. 16, no. 3, pp. 229–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, L. C. P. G. M. De Groot, P. Lips, J. H. Smit, and W. A. Van Staveren, “Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people,” Journal of Bone and Mineral Research, vol. 20, no. 6, pp. 921–929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. R. McLean, P. F. Jacques, J. Selhub et al., “Homocysteine as a predictive factor for hip fracture in older persons,” The New England Journal of Medicine, vol. 350, no. 20, pp. 2042–2049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. van Meurs, R. A. Dhonukshe-Rutten, S. M. Pluijm, et al., “Homocysteine levels and the risk of osteoporotic fracture,” The New England Journal of Medicine, vol. 350, no. 20, pp. 2033–2041, 2004.
  6. K. L. Tucker, M. T. Hannan, N. Qiao et al., “Low plasma vitamin B12 is associated with lower BMD: The Framingham osteoporosis study,” Journal of Bone and Mineral Research, vol. 20, no. 1, pp. 152–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Morris, P. F. Jacques, and J. Selhub, “Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans,” Bone, vol. 37, no. 2, pp. 234–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Cagnacci, F. Baldassari, G. Rivolta, S. Arangino, and A. Volpe, “Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women,” Bone, vol. 33, no. 6, pp. 956–959, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Golbahar, A. Hamidi, M. A. Aminzadeh, and G. R. Omrani, “Association of plasma folate, plasma total homocysteine, but not methylenetetrahydrofolate reductase C667T polymorphism, with bone mineral density in postmenopausal Iranian women: a cross-sectional study,” Bone, vol. 35, no. 3, pp. 760–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. G. Gjesdal, S. E. Vollset, P. M. Ueland et al., “Plasma total homocysteine level and bone mineral density: The Hordaland Homocysteine Study,” Archives of Internal Medicine, vol. 166, no. 1, pp. 88–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. L. Stone, D. C. Bauer, D. Sellmeyer, and S. R. Cummings, “Low serum vitamin B-12 levels are associated with increased hip bone loss in older women: a prospective study,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1217–1221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. de Bree, N. M. van der Put, L. I. Mennen, et al., “Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations,” European Journal of Clinical Nutrition, vol. 59, no. 4, pp. 480–488, 2005.
  13. W. Wouters-Wesseling, A. E. J. Wouters, C. N. Kleijer, J. G. Bindels, C. P. G. M. de Groot, and W. A. van Staveren, “Study of the effect of a liquid nutrition supplement on the nutritional status of psycho-geriatric nursing home patients,” European Journal of Clinical Nutrition, vol. 56, no. 3, pp. 245–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. P. M. Eussen, L. C. P. G. M. De Groot, R. Clarke et al., “Oral cyanocobalamin supplementation in older people with vitamin B 12 deficiency: a dose-finding trial,” Archives of Internal Medicine, vol. 165, no. 10, pp. 1167–1172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Green, “Indicators for assessing folate and vitamin B-12 status and for monitoring the efficacy of intervention strategies,” American Journal of Clinical Nutrition, vol. 94, no. 2, pp. 666S–672S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Selhub, P. F. Jacques, P. W. F. Wilson, D. Rush, and I. H. Rosenberg, “Vitamin status and intake as primary determinants of homocysteinemia in an elderly population,” Journal of the American Medical Association, vol. 270, no. 22, pp. 2693–2698, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. P. F. Jacques, A. G. Bostom, P. W. F. Wilson, S. Rich, I. H. Rosenberg, and J. Selhub, “Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort,” American Journal of Clinical Nutrition, vol. 73, no. 3, pp. 613–621, 2001. View at Scopus
  18. R. Clarke, “Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials,” British Medical Journal, vol. 316, no. 7135, pp. 894–898, 1998. View at Scopus
  19. A. M. Kuzminski, E. J. Del Giacco, R. H. Allen, S. P. Stabler, and J. Lindenbaum, “Effective treatment of cobalamin deficiency with oral cobalamin,” Blood, vol. 92, no. 4, pp. 1191–1198, 1998. View at Scopus
  20. J. Yang, X. Hu, Q. Zhang, H. Cao, J. Wang, and B. Liu, “Homocysteine level and risk of fracture: a meta-analysis and systematic review,” Bone, vol. 51, no. 3, pp. 376–382, 2012.
  21. C. Matthys, P. van't Veer, L. de Groot, et al., “EURRECAs approach for estimating micronutrient requirements,” International Journal for Vitamin and Nutrition Research, vol. 81, no. 4, pp. 256–263, 2011.
  22. O. W. Souverein, C. Dullemeijer, P. van't Veer, and H. van der Voet, “Transformations of summary statistics as input in meta-analysis for linear dose-response models on a logarithmic scale: a methodology developed within EURRECA,” BMC Medical Research Methodology, vol. 12, no. 1, article 57, 2012.
  23. R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986. View at Scopus
  24. C. G. Gjesdal, S. E. Vollset, P. M. Ueland, H. Refsum, H. E. Meyer, and G. S. Tell, “Plasma homocysteine, folate, and vitamin B12 and the risk of hip fracture: the hordaland homocysteine study,” Journal of Bone and Mineral Research, vol. 22, no. 5, pp. 747–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. R. McLean, P. F. Jacques, J. Selhub et al., “Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 6, pp. 2206–2212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Ravaglia, P. Forti, F. Maioli et al., “Folate, but not homocysteine, predicts the risk of fracture in elderly persons,” Journals of Gerontology A, vol. 60, no. 11, pp. 1458–1462, 2005. View at Scopus
  27. M. A. Périer, E. Gineyts, F. Munoz, E. Sornay-Rendu, and P. D. Delmas, “Homocysteine and fracture risk in postmenopausal women: The OFELY study,” Osteoporosis International, vol. 18, no. 10, pp. 1329–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Leboff, R. Narweker, A. Lacroix et al., “Homocysteine levels and risk of hip Fracture in postmenopausal women,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1207–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Gerdhem, K. K. Ivaska, A. Isaksson et al., “Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women,” Journal of Bone and Mineral Research, vol. 22, no. 1, pp. 127–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. W. Enneman, N. van der Velde, R. de Jonge, et al., “The association between plasma homocysteine levels, methylation capacity and incident osteoporotic fractures,” Bone, vol. 50, no. 6, pp. 1401–1405, 2012.
  31. K. Zhu, J. Beilby, I. M. Dick, A. Devine, M. Soós, and R. L. Prince, “The effects of homocysteine and MTHFR genotype on hip bone loss and fracture risk in elderly women,” Osteoporosis International, vol. 20, no. 7, pp. 1183–1191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Bozkurt, M. Erdem, E. YIlmaz et al., “The relationship of homocyteine, B12 and folic acid with the bone mineral density of the femur and lumbar spine in Turkish postmenopausal women,” Archives of Gynecology and Obstetrics, vol. 280, no. 3, pp. 381–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Bucciarelli, G. Martini, I. Martinelli et al., “The relationship between plasma homocysteine levels and bone mineral density in post-menopausal women,” European Journal of Internal Medicine, vol. 21, no. 4, pp. 301–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Cagnacci, B. Bagni, A. Zini, M. Cannoletta, M. Generali, and A. Volpe, “Relation of folates, vitamin B12 and homocysteine to vertebral bone mineral density change in postmenopausal women: a five-year longitudinal evaluation,” Bone, vol. 42, no. 2, pp. 314–320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. M. Dhonukshe-Rutten, M. Lips, N. De Jong et al., “Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men,” Journal of Nutrition, vol. 133, no. 3, pp. 801–807, 2003. View at Scopus
  36. B. Haliloglu, F. B. Aksungar, E. Ilter et al., “Relationship between bone mineral density, bone turnover markers and homocysteine, folate and vitamin B12 levels in postmenopausal women,” Archives of Gynecology and Obstetrics, vol. 281, no. 4, pp. 663–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Krivosikova, M. Krajčovičová-Kudláčková, V. Spustová, et al., “The association between high plasma homocysteine levels and lower bone mineral density in Slovak women: the impact of vegetarian diet,” European Journal of Nutrition, vol. 49, no. 3, pp. 147–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Naharci, E. Bozoglu, N. Karadurmus et al., “Vitamin B12 and folic acid levels as therapeutic target in preserving bone mineral density (BMD) of older men,” Archives of Gerontology and Geriatrics, vol. 54, no. 3, pp. 469–472, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Ouzzif, K. Oumghar, K. Sbai, A. Mounach, E. M. Derouiche, and A. El Maghraoui, “Relation of plasma total homocysteine, folate and vitamin B12 levels to bone mineral density in Moroccan healthy postmenopausal women,” Rheumatology International, vol. 32, no. 1, pp. 123–128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Rumbak, V. Ziic, L. Sokolic, S. Cvijetic, R. Kajfe, and I. Colic Baric, “Bone mineral density is not associated with homocysteine level, folate and vitamin B12 status,” Archives of Gynecology and Obstetrics, vol. 285, no. 4, pp. 991–1000, 2012.
  41. M. Baines, M. B. Kredan, A. Davison et al., “The association between cysteine, bone turnover, and low bone mass,” Calcified Tissue International, vol. 81, no. 6, pp. 450–454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Herrmann, N. Umanskaya, L. Traber et al., “The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 12, pp. 1785–1792, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Herrmann, J. Peter Schmidt, N. Umanskaya et al., “The role of hyperhomocysteinemia as well as folate, vitamin B6 and B12 deficiencies in osteoporosis—a systematic review,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 12, pp. 1621–1632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. R. McLean and M. T. Hannan, “B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology,” Current Osteoporosis Reports, vol. 5, no. 3, pp. 112–119, 2007. View at Scopus
  45. R. Levasseur, “Bone tissue and hyperhomocysteinemia,” Joint Bone Spine, vol. 76, no. 3, pp. 234–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Lips and N. M. van Schoor, “The effect of vitamin D on bone and osteoporosis,” Best Practice & Research, vol. 25, no. 4, pp. 585–591, 2011.
  47. Y. Sato, Y. Honda, J. Iwamoto, T. Kanoko, and K. Satoh, “Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial,” Journal of the American Medical Association, vol. 293, no. 9, pp. 1082–1088, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. J. P. van Wijngaarden, R. A. Dhonukshe-Rutten, N. M. van Schoor, et al., “Rationale and design of the B-PROOF study, a randomized controlled trial on the effect of supplemental intake of vitamin B12 and folic acid on fracture incidence,” BMC Geriatrics, vol. 11, no. 1, article 80, 2011.
  49. J. Higgins and S. Green, Cochrane Handbook for Systematic Reviews of Interventions, Version 5. 1. 0, The Cochrane Collaboration, 2011.
  50. L. H. Allen, “How common is vitamin B-12 deficiency?” The American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 693S–696S, 2009.
  51. H. McNulty and K. Pentieva, “Folate bioavailability,” Proceedings of the Nutrition Society, vol. 63, no. 4, pp. 529–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. E. A. Yetley, P. M. Coates, and C. L. Johnson, “Overview of a roundtable on NHANES monitoring of biomarkers of folate and vitamin B-12 status: measurement procedure issues,” American Journal of Clinical Nutrition, vol. 94, no. 1, pp. 297S–302S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Carmel, R. Green, D. S. Rosenblatt, and D. Watkins, “Update on cobalamin, folate, and homocysteine,” Hematology, pp. 62–81, 2003. View at Scopus
  54. L. Hoey, J. J. Strain, and H. McNulty, “Studies of biomarker responses to intervention with vitamin B-12: a systematic review of randomized controlled trials,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1981S–1996S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Saito, K. Fujii, and K. Marumo, “Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls,” Calcified Tissue International, vol. 79, no. 3, pp. 160–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Carmel, K. H. W. Lau, D. J. Baylink, S. Saxena, and F. R. Singer, “Cobalamin and osteoblast-specific proteins,” The New England Journal of Medicine, vol. 319, no. 2, pp. 70–75, 1988. View at Scopus
  57. G. S. Kim, C. H. Kim, J. Y. Park, K. U. Lee, and C. S. Park, “Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells,” Metabolism: Clinical and Experimental, vol. 45, no. 12, pp. 1443–1446, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Herrmann, N. Umanskaya, B. Wildemann et al., “Accumulation of homocysteine by decreasing concentrations of folate, vitamin B12 and B6 does not influence the activity of human osteoblasts in vitro,” Clinica Chimica Acta, vol. 384, no. 1-2, pp. 129–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Herrmann, T. Widmann, G. Colaianni, S. Colucci, A. Zallone, and W. Herrmann, “Increased osteoclast activity in the presence of increased homocysteine concentrations,” Clinical Chemistry, vol. 51, no. 12, pp. 2348–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. B. L. T. Vaes, C. Lute, H. J. Blom et al., “Vitamin B12 deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid,” Calcified Tissue International, vol. 84, no. 5, pp. 413–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. B. L. T. Vaes, C. Lute, S. P. van der Woning et al., “Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism,” Bone, vol. 46, no. 2, pp. 514–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. P. I. Holm, P. M. Ueland, S. E. Vollset, et al., “Betaine and folate status as cooperative determinants of plasma homocysteine in humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 2, pp. 379–385, 2005.
  63. R. Clarke and J. Armitage, “Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements,” Seminars in Thrombosis and Hemostasis, vol. 26, no. 3, pp. 341–348, 2000. View at Scopus