About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2013 (2013), Article ID 545439, 6 pages
http://dx.doi.org/10.1155/2013/545439
Research Article

Serum Phosphate Predicts Early Mortality among Underweight Adults Starting ART in Zambia: A Novel Context for Refeeding Syndrome?

1Centre for Infectious Diseases Research in Zambia, Plot 1275 Lubuto Road, P.O. Box 34681, Lusaka 10101, Zambia
2Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, A2200-MCN, 1161 21st Avenue South, Nashville, TN 37232-2582, USA
3Vanderbilt Institute for Global Health, 2525 West End Avenue, Suite 750, Nashville, TN 37203, USA
4Department of Biostatistics, Vanderbilt University Medical Center, S2323 MCN, 1161 21st Avenue South, Nashville, TN 37232-2582, USA
5University Teaching Hospital, Private Bag RWIX, Lusaka 10101, Zambia
6Schools of Medicine and Public Health, University of Alabama at Birmingham, 1900 University Boulevard, Birmingham, AL 35294, USA

Received 4 October 2012; Accepted 28 March 2013

Academic Editor: Heiner Boeing

Copyright © 2013 John R. Koethe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. A. Stringer, I. Zulu, J. Levy et al., “Rapid scale-up of antiretroviral therapy at primary care sites in Zambia: feasibility and early outcomes,” The Journal of the American Medical Association, vol. 296, no. 7, pp. 782–793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. D. Lawn, A. D. Harries, X. Anglaret, L. Myer, and R. Wood, “Early mortality among adults accessing antiretroviral treatment programmes in sub-Saharan Africa,” AIDS, vol. 22, no. 15, pp. 1897–1908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Johannessen, E. Naman, B. J. Ngowi et al., “Predictors of mortality in HIV-infected patients starting antiretroviral therapy in a rural hospital in Tanzania,” BMC Infectious Diseases, vol. 8, article 52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Gupta, G. Nadkarni, W. T. Yang et al., “Early mortality in adults initiating antiretroviral therapy (ART) in low- and middle-income countries (LMIC): a systematic review and meta-analysis,” PLoS ONE, vol. 6, no. 12, Article ID e28691, 2011. View at Publisher · View at Google Scholar
  5. W. Worodria, M. Massinga-Loembe, H. Mayanja-Kizza et al., “Antiretroviral treatment-associated tuberculosis in a prospective cohort of HIV-infected patients starting ART,” Clinical and Developmental Immunology, vol. 2011, Article ID 758350, 9 pages, 2011. View at Publisher · View at Google Scholar
  6. J. R. Koethe, M. I. Limbada, M. J. Giganti et al., “Early immunologic response and subsequent survival among malnourished adults receiving antiretroviral therapy in Urban Zambia,” AIDS, vol. 24, no. 13, pp. 2117–2121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Centers for Disease Control and Prevention, “Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Council of State and Territorial Epidemiologists; AIDS Program, Center for Infectious Diseases,” Morbidity and Mortality Weekly Report, vol. 36, supplement 1, pp. 1S–15S, 1987.
  8. D. C. Macallan, C. Noble, C. Baldwin et al., “Energy expenditure and wasting in human immunodeficiency virus infection,” The New England Journal of Medicine, vol. 333, no. 2, pp. 83–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Macallan, M. A. McNurlan, E. Milne, A. G. Calder, P. J. Garlick, and G. E. Griffin, “Whole-body protein turnover from leucine kinetics and the response to nutrition in human immunodeficiency virus infection,” The American Journal of Clinical Nutrition, vol. 61, no. 4, pp. 818–826, 1995. View at Scopus
  10. F. Briet, C. Twomey, and K. N. Jeejeebhoy, “Relationship between metabolism and peripheral blood mononuclear cell mitochondrial complex I activity before and after a short-term refeeding in weight-losing cancer patients,” Clinical Nutrition, vol. 22, no. 3, pp. 247–253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Briet, C. Twomey, and K. N. Jeejeebhoy, “Effect of malnutrition and short-term refeeding on peripheral blood mononuclear cell mitochondrial complex I activity in humans,” The American Journal of Clinical Nutrition, vol. 77, no. 5, pp. 1304–1311, 2003. View at Scopus
  12. M. Ott, B. Lembcke, H. Fischer et al., “Early changes of body composition in human immunodeficiency virus-infected patients: tetrapolar body impedance analysis indicates significant malnutrition,” The American Journal of Clinical Nutrition, vol. 57, no. 1, pp. 15–19, 1993. View at Scopus
  13. M. A. Crook, D. Collins, R. Swaminathan, and C. R. Paterson, “Severe hypophosphatemia related to refeeding,” Nutrition, vol. 12, no. 7-8, pp. 538–539, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. M. R. Kohn, N. H. Golden, and I. R. Shenker, “Cardiac arrest and delirium: presentations of the refeeding syndrome in severely malnourished adolescents with anorexia nervosa,” Journal of Adolescent Health, vol. 22, no. 3, pp. 239–243, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Schnitker, P. E. Mattman, and T. L. Bliss, “A clinical study of malnutrition in Japanese prisoners of war,” Annals of Internal Medicine, vol. 35, no. 1, pp. 69–96, 1951. View at Scopus
  16. M. A. Marinella, “Refeeding syndrome and hypophosphatemia,” Journal of Intensive Care Medicine, vol. 20, no. 3, pp. 155–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. H. Shevitz, T. A. Knox, D. Spiegelman, R. Roubenoff, S. L. Gorbach, and P. R. Skolnik, “Elevated resting energy expenditure among HIV-seropositive persons receiving highly active antiretroviral therapy,” AIDS, vol. 13, no. 11, pp. 1351–1357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Nyirenda, I. Zulu, E. K. Kabagambe et al., “Acute hypophosphatemia and hypokalemia in a patient starting antiretroviral therapy in Zambia—a new context for refeeding syndrome? A case report,” BMJ Case Reports, 2009. View at Publisher · View at Google Scholar
  19. D. C. Heimburger, J. R. Koethe, C. Nyirenda et al., “Serum phosphate predicts early mortality in adults starting antiretroviral therapy in Lusaka, Zambia: a prospective cohort study,” PLoS ONE, vol. 5, no. 5, Article ID e10687, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Koethe, M. Blevins, C. Nyirenda et al., “Nutrition and inflammation serum biomarkers are associated with 12-week mortality among malnourished adults initiating antiretroviral therapy in Zambia,” Journal of the International AIDS Society, vol. 14, article 19, 2011. View at Publisher · View at Google Scholar
  21. J. N. Ngu, D. C. Heimburger, D. K. Arnett et al., “Fasting triglyceride concentrations are associated with early mortality following antiretroviral therapy in Zambia,” North American Journal of Medical Sciences, vol. 3, no. 2, pp. 79–88, 2010.
  22. B. H. Chi, A. Mwango, M. Giganti et al., “Early clinical and programmatic outcomes with tenofovir-based antiretroviral therapy in Zambia,” Journal of Acquired Immune Deficiency Syndromes, vol. 54, no. 1, pp. 63–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. W. Krebs, B. H. Chi, Y. Mulenga et al., “Community-based follow-up for late patients enrolled in a district-wide programme for antiretroviral therapy in Lusaka, Zambia,” AIDS Care, vol. 20, no. 3, pp. 311–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. United Nations Administrative Committee on Coordination Sub-Committee on Nutrition, Fourth Report on the World Nutrition Situation, United Nations Administrative Committee on Coordination Sub-Committee on Nutrition, Geneva, Switzerland, 2000.
  25. A. S. Fauci, E. Braunwald, D. L. Kasper, S. L. Hauser, D. L. Longo, and J. L. Jameson, Harrison's Principles of Internal Medicine, McGraw-Hill Medical, New York, NY, USA, 17th edition, 2008.
  26. H. Peyrière, J. Reynes, I. Rouanet et al., “Renal tubular dysfunction associated with tenofovir therapy: report of 7 cases,” Journal of Acquired Immune Deficiency Syndromes, vol. 35, no. 3, pp. 269–273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Gallant, S. Staszewski, A. L. Pozniak et al., “Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial,” The Journal of the American Medical Association, vol. 292, no. 2, pp. 191–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Squires, A. L. Pozniak, G. Pierone Jr. et al., “Tenofovir disoproxil fumarate in nucleoside-resistant HIV-1 infection: a randomized trial,” Annals of Internal Medicine, vol. 139, no. 5, pp. 313–320, 2003. View at Scopus
  29. S. Rosen, M. P. Fox, and C. J. Gill, “Patient retention in antiretroviral therapy programs in sub-Saharan Africa: a systematic review,” PLoS Medicine, vol. 4, no. 10, article e298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P. Knochel, “The pathophysiology and clinical characteristics of severe hypophosphatemia,” Archives of Internal Medicine, vol. 137, no. 2, pp. 203–220, 1977. View at Publisher · View at Google Scholar · View at Scopus
  31. A. A. Boateng, K. Sriram, M. M. Meguid, and M. Crook, “Refeeding syndrome: treatment considerations based on collective analysis of literature case reports,” Nutrition, vol. 26, no. 2, pp. 156–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Heimburger and J. Ard, Eds., Handbook of Clinical Nutrition, Mosby, Elsevier, Philadelphia, Pa, USA, 2006.