About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2013 (2013), Article ID 682673, 12 pages
http://dx.doi.org/10.1155/2013/682673
Review Article

Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension

1Marshall University’s Joan C. Edwards School of Medicine, 1600 Medical Center Drive, Huntington, WV 25701-3655, USA
2Department of Medicine, Marshall University Joan Edwards School of Medicine, 1600 Medical Center Drive, Huntington, WV 25701-3655, USA

Received 7 March 2013; Revised 14 May 2013; Accepted 14 May 2013

Academic Editor: Peter M. Clifton

Copyright © 2013 Zeid Khitan and Dong Hyun Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Osler, The Principles and Practice of Medicine, 2nd edition, 1895.
  2. S. Cory, A. Ussery-Hall, S. Griffin-Blake et al., “Prevalence of selected risk behaviors and chronic diseases and conditions-steps communities, United States, 2006-2007,” Morbidity and Mortality Weekly Report, vol. 59, no. 8, pp. 1–37, 2010. View at Scopus
  3. C. S. Fox, M. J. Pencina, J. B. Meigs, R. S. Vasan, Y. S. Levitzky, and R. B. D'Agostino, “Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: The Framingham Heart Study,” Circulation, vol. 113, no. 25, pp. 2914–2918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. B. B. Kahn and J. S. Flier, “Obesity and insulin resistance,” The Journal of Clinical Investigation, vol. 106, no. 4, pp. 473–481, 2000. View at Scopus
  5. W. H. Pan, K. M. Flegal, H. Y. Chang, W. T. Yeh, C. J. Yeh, and W. C. Lee, “Body mass index and obesity-related metabolic disorders in Taiwanese and US whites and blacks: implications for definitions of overweight and obesity for Asians,” The American Journal of Clinical Nutrition, vol. 79, no. 1, pp. 31–39, 2004. View at Scopus
  6. R. J. Johnson, S. E. Perez-Pozo, Y. Y. Sautin et al., “Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes?” Endocrine Reviews, vol. 30, no. 1, pp. 96–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Johnson, M. S. Segal, Y. Sautin et al., “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease1-3,” The American Journal of Clinical Nutrition, vol. 86, no. 4, pp. 899–906, 2007. View at Scopus
  8. F. Q. Zhao and A. F. Keating, “Functional properties and genomics of glucose transporters,” Current Genomics, vol. 8, no. 2, pp. 113–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. I. H. Fox and W. N. Kelley, “Studies on the mechanism of fructose-induced hyperuricemia in man,” Metabolism, vol. 21, no. 8, pp. 713–721, 1972. View at Scopus
  10. P. H. Mäenpää, K. O. Raivio, and M. P. Kekomäki, “Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis,” Science, vol. 161, no. 3847, pp. 1253–1254, 1968. View at Scopus
  11. B. Gustafson, “Adipose tissue, inflammation and atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 4, pp. 332–341, 2010. View at Scopus
  12. R. Murray, D. Bender, K. M. Botham, P. J. Kennelly, V. Rodwell, and P. A. Weil, Harper's Illustrated Biochemistry, New York, NY, USA, 2003.
  13. O. P. McGuinness and A. D. Cherrington, “Effects of fructose on hepatic glucose metabolism,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 6, no. 4, pp. 441–448, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Lanaspa, L. G. Sanchez-Lozada, C. Cicerchi, et al., “Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver,” PLoS One, vol. 7, no. 10, Article ID e47948, 2012.
  15. U. M. Khosla, S. Zharikov, J. L. Finch et al., “Hyperuricemia induces endothelial dysfunction,” Kidney International, vol. 67, no. 5, pp. 1739–1742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Y. Sautin, T. Nakagawa, S. Zharikov, and R. J. Johnson, “Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress,” American Journal of Physiology, vol. 293, no. 2, pp. C584–C596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Fiaschi, B. Baggio, S. Favaro, et al., “Fructose-induced hyperuricemia in essential hypertension,” Metabolism, vol. 26, no. 11, pp. 1219–1223, 1977. View at Scopus
  18. J. Perheentupa and K. Raivio, “Fructose-induced hyperuricaemia,” The Lancet, vol. 2, no. 7515, pp. 528–531, 1967. View at Scopus
  19. F. Stirpe, E. Della Corte, E. Bonetti, A. Abbondanza, A. Abbati, and F. De Stefano, “Fructose-induced hyperuricaemia.,” The Lancet, vol. 2, no. 7686, pp. 1310–1311, 1970. View at Scopus
  20. K. L. Stanhope and P. J. Havel, “Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance,” Current Opinion in Lipidology, vol. 19, no. 1, pp. 16–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. F. M. Raushel and W. W. Cleland, “The substrate and anomeric specificity of fructokinase,” The Journal of Biological Chemistry, vol. 248, no. 23, pp. 8174–8177, 1973. View at Scopus
  22. C. P. Diggle, M. Shires, D. Leitch et al., “Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme,” Journal of Histochemistry and Cytochemistry, vol. 57, no. 8, pp. 763–774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Asipu, B. E. Hayward, J. O'Reilly, and D. T. Bonthron, “Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria,” Diabetes, vol. 52, no. 9, pp. 2426–2432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Ishimoto, M. A. Lanaspa, M. T. Le, et al., “Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 11, pp. 4320–4325, 2012.
  25. C. P. Diggle, M. Shires, C. McRae et al., “Both isoforms of ketohexokinase are dispensable for normal growth and development,” Physiological Genomics, vol. 42, no. 4, pp. 235–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. K. A. Lê, D. Faeh, R. Stettler et al., “A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans,” The American Journal of Clinical Nutrition, vol. 84, no. 6, pp. 1374–1379, 2006. View at Scopus
  27. E. Mayatepek, B. Hoffmann, and T. Meissner, “Inborn errors of carbohydrate metabolism,” Best Practice and Research, vol. 24, no. 5, pp. 607–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. E. R. Froesch, “Disorders of fructose metabolism,” Clinics in Endocrinology and Metabolism, vol. 5, no. 3, pp. 599–611, 1976. View at Scopus
  29. D. T. Bonthron, N. Brady, I. A. Donaldson, and B. Steinmann, “Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase),” Human Molecular Genetics, vol. 3, no. 9, pp. 1627–1631, 1994. View at Scopus
  30. B. P. Marriott, N. Cole, and E. Lee, “National estimates of dietary fructose intake increased from 1977 to 2004 in the United States,” Journal of Nutrition, vol. 139, no. 6, pp. 1228S–1235S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. K. Park and E. A. Yetley, “Intakes and food sources of fructose in the United States,” The American Journal of Clinical Nutrition, vol. 58, no. 5, supplement, pp. 737S–747S, 1993. View at Scopus
  32. G. A. Bray, S. J. Nielsen, and B. M. Popkin, “Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity,” The American Journal of Clinical Nutrition, vol. 79, no. 4, pp. 537–543, 2004. View at Scopus
  33. G. A. Bray, “The epidemic of obesity and changes in food intake: the fluoride hypothesis,” Physiology and Behavior, vol. 82, no. 1, pp. 115–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. F. B. Hu and V. S. Malik, “Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence,” Physiology and Behavior, vol. 100, no. 1, pp. 47–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. V. S. Malik, M. B. Schulze, and F. B. Hu, “Intake of sugar-sweetened beverages and weight gain: a systematic review,” The American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 274–288, 2006. View at Scopus
  36. R. E. Morgan, “Does consumption of high-fructose corn syrup beverages cause obesity in children?” Pediatric Obesity, 2013. View at Publisher · View at Google Scholar
  37. K. L. Stanhope and P. J. Havel, “Fructose consumption: recent results and their potential implications,” Annals of the New York Academy of Sciences, vol. 1190, pp. 15–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. L. C. Dolan, S. M. Potter, and G. A. Burdock, “Evidence-based review on the effect of normal dietary consumption of fructose on development of hyperlipidemia and obesity in healthy, normal weight individuals,” Critical Reviews in Food Science and Nutrition, vol. 50, no. 1, pp. 53–84, 2010. View at Scopus
  39. R. A. Forshee, P. A. Anderson, and M. L. Storey, “Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis,” The American Journal of Clinical Nutrition, vol. 87, no. 6, pp. 1662–1671, 2008. View at Scopus
  40. V. Ha, J. L. Sievenpiper, R. J. de Souza, et al., “Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials,” Hypertension, vol. 59, no. 4, pp. 787–795, 2012.
  41. R. D. Mattes, J. M. Shikany, K. A. Kaiser, and D. B. Allison, “Nutritively sweetened beverage consumption and body weight: a systematic review and meta-analysis of randomized experiments,” Obesity Reviews, vol. 12, no. 5, pp. 346–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. Sievenpiper, R. J. de Souza, A. Mirrahimi, et al., “Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis,” Annals of Internal Medicine, vol. 156, no. 4, pp. 291–304, 2012.
  43. M. Chen, A. Pan, V. S. Malik, and F. B. Hu, “Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials,” The American Journal of Clinical Nutrition, vol. 96, no. 4, pp. 735–747, 2012.
  44. T. A. Ledoux, K. Watson, A. Barnett, N. T. Nguyen, J. C. Baranowski, and T. Baranowski, “Components of the diet associated with child adiposity: a cross-sectional study,” Journal of the American College of Nutrition, vol. 30, no. 6, pp. 536–546, 2011.
  45. M. B. Schulze, J. E. Manson, D. S. Ludwig et al., “Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women,” Journal of the American Medical Association, vol. 292, no. 8, pp. 927–934, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Z. Sun, G. H. Anderson, B. D. Flickinger, P. S. Williamson-Hughes, and M. W. Empie, “Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome,” Food and Chemical Toxicology, vol. 49, no. 11, pp. 2875–2882, 2011.
  47. R. H. Unger, “Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome,” Endocrinology, vol. 144, no. 12, pp. 5159–5165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. V. A. Zammit, I. J. Waterman, D. Topping, and G. McKay, “Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance,” Journal of Nutrition, vol. 131, no. 8, pp. 2074–2077, 2001. View at Scopus
  49. S. E. Perez-Pozo, J. Schold, T. Nakagawa, L. G. Sánchez-Lozada, R. J. Johnson, and J. L. Lillo, “Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response,” International Journal of Obesity, vol. 34, no. 3, pp. 454–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. D. I. Jalal, G. Smits, R. J. Johnson, and M. Chonchol, “Increased fructose associates with elevated blood pressure,” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1543–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Nguyen, H. K. Choi, R. H. Lustig, and C. Y. Hsu, “Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents,” Journal of Pediatrics, vol. 154, no. 6, pp. 807–813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. H. Kim, G. P. Abris, M. K. Sung, and J. E. Lee, “Consumption of sugar-sweetened beverages and blood pressure in the United States: the national health and nutrition examination survey 2003–2006,” Clinical Nutrition Research, vol. 1, no. 1, pp. 85–93, 2012.
  53. D. I. Feig, M. Mazzali, D. H. Kang et al., “Serum uric acid: a risk factor and a target for treatment?” Journal of the American Society of Nephrology, vol. 17, no. 4, supplement 2, pp. S69–S73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. D. I. Feig, D. H. Kang, and R. J. Johnson, “Medical progress: uric acid and cardiovascular risk,” The New England Journal of Medicine, vol. 359, no. 17, pp. 1811–1821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. A. Pereira and V. L. Fulgoni III, “Consumption of 100% fruit juice and risk of obesity and metabolic syndrome: findings from the national health and nutrition examination survey 1999–2004,” Journal of the American College of Nutrition, vol. 29, no. 6, pp. 625–629, 2010.
  56. C. M. Champagne, S. T. Broyles, L. D. Moran, et al., “Dietary intakes associated with successful weight loss and maintenance during the Weight Loss Maintenance trial,” Journal of the American Dietetic Association, vol. 111, no. 12, pp. 1826–1835, 2011.
  57. J. L. Rosado, O. P. Garcia, D. Ronquillo et al., “Intake of milk with added micronutrients increases the effectiveness of an energy-restricted diet to reduce body weight: a randomized controlled clinical trial in Mexican women,” Journal of the American Dietetic Association, vol. 111, no. 10, pp. 1507–1516, 2011.
  58. S. C. Disse, A. Buelow, R. H. Boedeker et al., “Reduced prevalence of obesity in children with primary fructose malabsorption: a multicentre, retrospective cohort study,” Pediatric Obesity, 2013. View at Publisher · View at Google Scholar
  59. R. W. Walker, K. A. Le, J. Davis et al., “High rates of fructose malabsorption are associated with reduced liver fat in obese African Americans,” Journal of the American College of Nutrition, vol. 31, no. 5, pp. 369–374, 2012.
  60. M. E. F. Vázquez-Vela, N. Torres, and A. R. Tovar, “White adipose tissue as endocrine organ and its role in obesity,” Archives of Medical Research, vol. 39, no. 8, pp. 715–728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. I. Lefterova and M. A. Lazar, “New developments in adipogenesis,” Trends in Endocrinology and Metabolism, vol. 20, no. 3, pp. 107–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. F. M. Gregoire, C. M. Smas, and H. S. Sul, “Understanding adipocyte differentiation,” Physiological Reviews, vol. 78, no. 3, pp. 783–809, 1998. View at Scopus
  63. E. D. Rosen, C. J. Walkey, P. Puigserver, and B. M. Spiegelman, “Transcriptional regulation of adipogenesis,” Genes and Development, vol. 14, no. 11, pp. 1293–1307, 2000. View at Scopus
  64. R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Y. Kim, E. van de Wall, M. Laplante et al., “Obesity-associated improvements in metabolic profile through expansion of adipose tissue,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2621–2637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. C. N. Martini, M. V. Plaza, and M. D. C. Vila, “PKA-dependent and independent cAMP signaling in 3T3-L1 fibroblasts differentiation,” Molecular and Cellular Endocrinology, vol. 298, no. 1-2, pp. 42–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. G. X. Shen, “Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 3, pp. 241–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. A. De Pauw, S. Tejerina, M. Raes, J. Keijer, and T. Arnould, “Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations,” American Journal of Pathology, vol. 175, no. 3, pp. 927–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. E. Patti and S. Corvera, “The role of mitochondria in the pathogenesis of type 2 diabetes,” Endocrine Reviews, vol. 31, no. 3, pp. 364–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. A. H. Berg, T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer, “The adipocyte-secreted protein Acrp30 enhances hepatic insulin action,” Nature Medicine, vol. 7, no. 8, pp. 947–953, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Yamauchi, J. Kamon, Y. Minokoshi, et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002.
  72. V. L. Burt, P. Whelton, E. J. Roccella et al., “Prevalence of hypertension in the US adult population: results from the third National Health and Nutrition Examination Survey, 1988-1991,” Hypertension, vol. 25, no. 3, pp. 305–313, 1995. View at Scopus
  73. L. E. Fields, V. L. Burt, J. A. Cutler, J. Hughes, E. J. Roccella, and P. Sorlie, “The burden of adult hypertension in the United States 1999 to 2000: a rising tide,” Hypertension, vol. 44, no. 4, pp. 398–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Taylor, “The hypertension detection and follow-up program: a progress report,” Circulation Research, vol. 40, no. 5, supplement 1, pp. I106–I109, 1977.
  75. A. B. Alper Jr., W. Chen, L. Yau, S. R. Srinivasan, G. S. Berenson, and L. L. Hamm, “Childhood uric acid predicts adult blood pressure: The Bogalusa Heart Study,” Hypertension, vol. 45, no. 1, pp. 34–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Masuo, H. Kawaguchi, H. Mikami, T. Ogihara, and M. L. Tuck, “Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation,” Hypertension, vol. 42, no. 4, pp. 474–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. P. B. Mellen, A. J. Bleyer, T. P. Erlinger et al., “Serum uric acid predicts incident hypertension in a biethnic cohort: The Atherosclerosis Risk in Communities Study,” Hypertension, vol. 48, no. 6, pp. 1037–1042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Nagahama, T. Inoue, K. Iseki et al., “Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa, Japan,” Hypertension Research, vol. 27, no. 11, pp. 835–841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Sundström, L. Sullivan, R. B. D'Agostino, D. Levy, W. B. Kannel, and R. S. Vasan, “Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence,” Hypertension, vol. 45, no. 1, pp. 28–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Mazzali, J. Hughes, Y. G. Kim et al., “Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism,” Hypertension, vol. 38, no. 5, pp. 1101–1106, 2001. View at Scopus
  81. D. I. Feig, B. Soletsky, and R. J. Johnson, “Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 8, pp. 924–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Soletsky and D. I. Feig, “Uric acid reduction rectifies prehypertension in obese adolescents,” Hypertension, vol. 60, no. 5, pp. 1148–1156, 2012.
  83. V. Farah, K. M. Elased, Y. Chen et al., “Nocturnal hypertension in mice consuming a high fructose diet,” Autonomic Neuroscience, vol. 130, no. 1-2, pp. 41–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. K. De, D. D. Senador, C. Mostarda, M. C. Irigoyen, and M. Morris, “Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice,” American Journal of Physiology, vol. 302, no. 8, pp. R950–R957, 2012.
  85. I. Hwang, H. Ho, B. B. Hoffman, and G. M. Reaven, “Fructose-induced insulin resistance and hypertension in rats,” Hypertension, vol. 10, no. 5, pp. 512–516, 1987. View at Scopus
  86. B. M. Wolfe and S. P. Ahuja, “Effects of intravenously administered fructose and glucose on splanchnic secretion of plasma triglycerides in hypertriglyceridemic men,” Metabolism, vol. 26, no. 9, pp. 963–978, 1977. View at Scopus
  87. Y. Sato, T. Ito, N. Udaka et al., “Immunohistochemical localization of facilitated-diffusion glucose transporters in rat pancreatic islets,” Tissue and Cell, vol. 28, no. 6, pp. 637–643, 1996. View at Publisher · View at Google Scholar · View at Scopus
  88. K. L. Teff, S. S. Elliott, M. Tschöp et al., “Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2963–2972, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. M. M. Swarbrick, K. L. Stanhope, S. S. Elliott et al., “Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women,” British Journal of Nutrition, vol. 100, no. 5, pp. 947–952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Rebollo, N. Roglans, M. Alegret, and J. C. Laguna, “Way back for fructose and liver metabolism: bench side to molecular insights,” World Journal of Gastroenterology, vol. 18, no. 45, pp. 6552–6559, 2012.
  91. M. I. Goran, S. J. Ulijaszek, and E. E. Ventura, “High fructose corn syrup and diabetes prevalence: a global perspective,” Global Public Health, vol. 8, no. 1, pp. 55–64, 2013.
  92. Y. Mukai, M. Kumazawa, and S. Sato, “Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein-1c in rats,” Endocrine, 2012. View at Publisher · View at Google Scholar
  93. M. M. Perala, S. Mannisto, N. E. Kaartinen et al., “Body size at birth is associated with food and nutrient intake in adulthood,” PLoS One, vol. 7, no. 9, Article ID e46139, 2012.
  94. G. Koricanac, S. Tepavcevic, S. Romic, et al., “Estradiol enhances effects of fructose rich diet on cardiac fatty acid transporter CD36 and triglycerides accumulation,” European Journal of Pharmacology, vol. 694, no. 1–3, pp. 127–134, 2012.
  95. M. Zou, E. J. Arentson, D. Teegarden, S. L. Koser, L. Onyskow, and S. S. Donkin, “Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats,” Nutrition Research, vol. 32, no. 8, pp. 588–598, 2012.
  96. H. Li, R. Xu, X. Peng, Y. Wang, and T. Wang, “Association of glucokinase regulatory protein polymorphism with type 2 diabetes and fasting plasma glucose: a meta-analysis,” Molecular Biology Reports, vol. 40, no. 6, pp. 3935–3942, 2013.
  97. A. Masotti, “Comment on: Visinoni et al. The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity, Diabetes, vol. 61, pp. 1122–1132, 2012,” Diabetes, vol. 61, no. 12, article e20, 2012.
  98. Y. Marcus, G. Shefer, and K. Sasson, “Angiotensin 1-7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model,” Diabetes, vol. 62, no. 4, pp. 1121–1130, 2013.
  99. M. J. Merrins, R. Bertram, A. Sherman, and L. S. Satin, “Phosphofructo-2-kinase/fructose-2,6-bisphosphatase modulates oscillations of pancreatic islet metabolism,” PLoS One, vol. 7, no. 4, Article ID e34036, 2012.
  100. A. L. Wilson-O'Brien, N. Patron, and S. Rogers, “Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT) family,” BMC Evolutionary Biology, vol. 10, no. 1, article 152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. B. Buemann, S. Toubro, J. J. Holst, J. F. Rehfeld, B. M. Bibby, and A. Astrup, “D-Tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration,” Metabolism, vol. 49, no. 8, pp. 969–976, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. M. F. Schaalan, “Effects of pioglitazone and/or simvastatin on circulating TNFalpha and adiponectin levels in insulin resistance,” Journal of Immunotoxicology, vol. 9, no. 2, pp. 201–209, 2012.
  103. A. M. Puyo, J. S. Borroni, S. Boudou et al., “Metformin reduces vascular production of vasoconstrictor prostanoids in fructose overloaded rats,” Autonomic and Autacoid Pharmacology, vol. 32, no. 1, part 2, pp. 9–14, 2012.
  104. C. L. Chou, C. Y. Pang, T. J. Lee, and T. C. Fang, “Direct renin inhibitor prevents and ameliorates insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats,” Hypertension Research, vol. 36, no. 2, pp. 123–128, 2013.
  105. P. Li, T. Koike, H. Y. Jiang, Z. H. Wang, Y. Kawata, and Y. Oshida, “Acute treatment with candesartan cilexetil, an angiotensin II type 1 receptor blocker, improves insulin sensitivity in high-fructose-diet-fed rats,” Hormone and Metabolic Research, vol. 44, no. 4, pp. 286–290, 2012.
  106. M. H. Abdulla, M. A. Sattar, N. A. Abdullah, and E. J. Johns, “The effect of losartan and carvedilol on renal haemodynamics and altered metabolism in fructose-fed Sprague-Dawley rats,” Journal of Physiology and Biochemistry, vol. 68, no. 3, pp. 353–363, 2012.
  107. Q. Guo, T. Mori, Y. Jiang et al., “Losartan modulates muscular capillary density and reverses thiazide diuretic-exacerbated insulin resistance in fructose-fed rats,” Hypertension Research, vol. 35, no. 1, pp. 48–54, 2012.
  108. D. Yoshida, K. Higashiura, Y. Shinshi et al., “Effects of angiotensin II receptor blockade on glucose metabolism via AMP-activated protein kinase in insulin-resistant hypertensive rats,” Journal of the American Society of Hypertension, vol. 3, no. 1, pp. 3–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Ran, T. Hirano, T. Fukui et al., “Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: an implication for hypertension-related insulin resistance,” Metabolism, vol. 55, no. 4, pp. 478–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. F. Jing, M. Mogi, and M. Horiuchi, “Role of renin-angiotensin-aldosterone system in adipose tissue dysfunction,” Molecular and Cellular Endocrinology, 2012. View at Publisher · View at Google Scholar
  111. N. S. Kalupahana, F. Massiera, A. Quignard-Boulange et al., “Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance,” Obesity, vol. 20, no. 1, pp. 48–56, 2012.
  112. L. Yvan-Charvet and A. Quignard-Boulangé, “Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity,” Kidney International, vol. 79, no. 2, pp. 162–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. H. S. Weisinger, D. P. Begg, G. F. Egan et al., “Angiotensin converting enzyme inhibition from birth reduces body weight and body fat in Sprague-Dawley rats,” Physiology and Behavior, vol. 93, no. 4-5, pp. 820–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Kurata, H. Nishizawa, S. Kihara et al., “Blockade of angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation,” Kidney International, vol. 70, no. 10, pp. 1717–1724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Yvan-Charvet, P. Even, M. Bloch-Faure et al., “Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance,” Diabetes, vol. 54, no. 4, pp. 991–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Saiki, M. Ohira, K. Endo et al., “Circulating angiotensin II is associated with body fat accumulation and insulin resistance in obese subjects with type 2 diabetes mellitus,” Metabolism, vol. 58, no. 5, pp. 708–713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Matsushita, Y. Wu, Y. Okamoto, R. E. Pratt, and V. J. Dzau, “Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes,” Hypertension, vol. 48, no. 6, pp. 1095–1102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Sydow, H. Burchardi, J. Zinserling, H. Ische, T. A. Crozier, and W. Weyland, “Improved determination of static compliance by automated single volume steps in ventilated patients,” Intensive Care Medicine, vol. 17, no. 2, pp. 108–114, 1991. View at Scopus
  119. B. N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein, “Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 11, pp. 6858–6862, 1981. View at Scopus
  120. C. M. Brown, A. G. Dulloo, and J. P. Montani, “Sugary drinks in the pathogenesis of obesity and cardiovascular diseases,” International Journal of Obesity, vol. 32, supplement 6, pp. S28–S34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. J. R. Palmer, D. A. Boggs, S. Krishnan, F. B. Hu, M. Singer, and L. Rosenberg, “Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women,” Archives of Internal Medicine, vol. 168, no. 14, pp. 1487–1492, 2008. View at Publisher · View at Google Scholar · View at Scopus