About this Journal Submit a Manuscript Table of Contents
Journal of Nutrition and Metabolism
Volume 2013 (2013), Article ID 716861, 15 pages
http://dx.doi.org/10.1155/2013/716861
Review Article

Immobilization Technologies in Probiotic Food Production

1Applied Microbiology and Molecular Biotechnology Research Group, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
2Faculty of Agriculture, Department of Food Technology, University of Belgrade, Nemanjina 6, Zemun, 11081 Belgrade, Serbia
3Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Received 26 April 2013; Revised 15 August 2013; Accepted 20 August 2013

Academic Editor: Phillip B. Hylemon

Copyright © 2013 Gregoria Mitropoulou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Fuller, “Probiotics in man and animals,” Journal of Applied Bacteriology, vol. 66, no. 5, pp. 365–378, 1989. View at Scopus
  2. S. Salminen, A. von Wright, L. Morelli et al., “Demonstration of safety of probiotics: a review,” International Journal of Food Microbiology, vol. 44, no. 1-2, pp. 93–106, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Salminen, A. Ouwehand, Y. Benno, and Y. K. Lee, “Probiotics: how should they be defined?” Trends in Food Science & Technology, vol. 10, no. 3, pp. 107–110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, “Guidelines for the evaluation of probiotics in food: report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food,” London, Ontario, Canada April and May 2002.
  5. H. Haenel and J. Bendig, “Intestinal flora in health and disease,” Progress in food & Nutrition Science, vol. 1, no. 1, pp. 21–64, 1975. View at Scopus
  6. T. Mitsuoka, “Recent trends in research on intestinal flora,” Bifidobacteria Microflora, vol. 1, pp. 3–24, 1982.
  7. S. Salminen, A. C. Ouwehand, and E. Isolauri, “Clinical applications of probiotic bacteria,” International Dairy Journal, vol. 8, no. 5-6, pp. 563–572, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Kopp-Hoolihan, “Prophylactic and therapeutic uses of probiotics: a review,” Journal of the American Dietetic Association, vol. 101, no. 2, pp. 229–241, 2001. View at Scopus
  9. M. Alander, R. Satokari, R. Korpela et al., “Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption,” Applied and Environmental Microbiology, vol. 65, no. 1, pp. 351–354, 1999. View at Scopus
  10. T. Mattila-Sandholm, J. Mättö, and M. Saarela, “Lactic acid bacteria with health claims—interactions and interference with gastrointestinal flora,” International Dairy Journal, vol. 9, no. 1, pp. 25–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Saarela, G. Mogensen, R. Fondén, J. Mättö, and T. Mattila-Sandholm, “Probiotic bacteria: safety, functional and technological properties,” Journal of Biotechnology, vol. 84, no. 3, pp. 197–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Svensson, “Industrial perspectives,” in Probiotics: A Critical Review, G. W. Tannock, Ed., pp. 57–64, Horizon Scientific Press, Wymondham, UK, 1999.
  13. J. E. Teitelbaum and W. A. Walker, “Nutritional impact of pre- and probiotics as protective gastrointestinal organisms,” Annual Review of Nutrition, vol. 22, pp. 107–138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Begley, C. Hill, and C. G. M. Gahan, “Bile salt hydrolase activity in probiotics,” Applied and Environmental Microbiology, vol. 72, no. 3, pp. 1729–1738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Sidira, A. Galanis, P. Ypsilantis et al., “Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora,” Journal of Molecular Microbiology and Biotechnology, vol. 19, no. 4, pp. 224–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Saxami, P. Ypsilantis, M. Sidira, C. Simopoulos, Y. Kourkoutas, and A. Galanis, “Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa,” Anaerobe, vol. 18, no. 4, pp. 417–420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Marteau, P. Pochart, Y. Bouhnik, and J. C. Rambaud, “The fate and effects of transiting, nonpathogenic microorganisms in the human intestine,” World Review of Nutrition and Dietetics, vol. 74, pp. 1–21, 1993. View at Scopus
  18. P. A. Clark, L. N. Cotton, and J. H. Martin, “Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II. Tolerance to simulated pH of human stomach,” Cultured Dairy Products Journal, vol. 28, pp. 11–14, 1993.
  19. W. E. B. Lankaputhra and N. P. Shah, “Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts,” Cultured Dairy Products Journal, vol. 30, pp. 2–7, 1995.
  20. W. P. Charteris, P. M. Kelly, L. Morelli, and J. K. Collins, “Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract,” Journal of Applied Microbiology, vol. 84, no. 5, pp. 759–768, 1998. View at Scopus
  21. P. A. Clark and J. H. Martin, “Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: III. Tolerance to simulated bile concentrations of human intestines,” Cultured Dairy Products Journal, vol. 29, pp. 18–21, 1994.
  22. J. P. Grill, C. Manginot-Durr, F. Schneider, and J. Ballongue, “Bifidobacteria and probiotic effects: action of Bifidobacterium species on conjugated bile salts,” Current Microbiology, vol. 31, no. 1, pp. 23–27, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. A. C. Ouwehand, E. Isolauri, P. V. Kirjavainen, and S. J. Salminen, “Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups,” FEMS Microbiology Letters, vol. 172, no. 1, pp. 61–64, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. I. H. Kim, M. S. Park, and G. E. Ji, “Characterization of adhesion of bifidobacterium sp. BGN4 to human enterocyte-like caco-2 cells,” Journal of Microbiology and Biotechnology, vol. 13, no. 2, pp. 276–281, 2003. View at Scopus
  25. N. Berrada, J. F. Lemeland, G. Laroche, P. Thouvenot, and M. Piaia, “Bifidobacterium from fermented milks: survival during gastric transit,” Journal of dairy science, vol. 74, no. 2, pp. 409–413, 1991. View at Scopus
  26. V. A. Nedović, B. Obradović, I. Leskošek-Čukalović, and G. Vunjak-Novaković, “Immobilized yeast bioreactor systems for brewing-recent achievements,” in Focus on Biotechnology, P. Thonart and M. Hofman, Eds., vol. 4 of Engineering and Manufacturingfor Biotechnology, pp. 277–292, Kluwer Academic, Dodrecht, The Netherlands, 2001.
  27. A. C. Ouwehand and S. J. Salminen, “The health effects of cultured milk products with viable and non-viable bacteria,” International Dairy Journal, vol. 8, no. 9, pp. 749–758, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Lahtinen, “Probiotic viability-does it matter?” Microbial Ecology in Health & Disease, vol. 23, pp. 10–14, 2012.
  29. S.-D. Xiao, D. Z. Zhang, H. Lu et al., “Multicenter, randomized, controlled trial of heat-killed Lactobacillus acidophilus LB in patients with chronic diarrhea,” Advances in Therapy, vol. 20, no. 5, pp. 253–260, 2003. View at Scopus
  30. G. Reid, D. Beuerman, C. Heinemann, and A. W. Bruce, “Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora,” FEMS Immunology and Medical Microbiology, vol. 32, no. 1, pp. 37–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. P. V. Kirjavainen, S. J. Salminen, and E. Isolauri, “Probiotic bacteria in the management of atopic disease: underscoring the importance of viability,” Journal of Pediatric Gastroenterology and Nutrition, vol. 36, no. 2, pp. 223–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Verhoeven, N. Renard, A. Makar et al., “Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study,” European Journal of Cancer Prevention, vol. 22, no. 1, pp. 46–51, 2013.
  33. T. D. Boylston, C. G. Vinderola, H. B. Ghoddusi, and J. A. Reinheimer, “Incorporation of bifidobacteria into cheeses: challenges and rewards,” International Dairy Journal, vol. 14, no. 5, pp. 375–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. N. P. Shah, W. E. V. Lankaputhra, M. L. Britz, and W. S. A. Kyle, “Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage,” International Dairy Journal, vol. 5, no. 5, pp. 515–521, 1995. View at Scopus
  35. U. Schillinger, “Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage,” International Journal of Food Microbiology, vol. 47, no. 1-2, pp. 79–87, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. F. A. M. Klaver, F. Kingma, and A. H. Weerkamp, “Growth and survival of bifidobacteria in milk,” Netherlands Milk and Dairy Journal, vol. 47, no. 3-4, pp. 151–164, 1993. View at Scopus
  37. J. H. Martin and K. M. Chou, “Selection of Bifidobacterium ssp for use as dietary adjuncts in cultured dairy foods I. Tolerance to pH of yoghurt,” Cultured Dairy Products Journal, vol. 27, pp. 21–26, 1992.
  38. A. Samona and R. K. Robinson, “Effect of yoghurt cultures on the survival of bifidobacteria in fermented milks,” Journal of the Society of Dairy Technology, vol. 47, pp. 58–60, 1994. View at Publisher · View at Google Scholar
  39. W. E. V. Lankaputhra, N. P. Shah, and M. L. Britz, “Survival of bifidobacteria during refrigerated storage in the presence of acid and hydrogen peroxide,” Milchwissenschaft, vol. 51, no. 2, pp. 65–70, 1996. View at Scopus
  40. R. I. Dave and N. P. Shah, “Viability of yoghurt and probiotic bacteria in yoghurts made from commerical starter cultures,” International Dairy Journal, vol. 7, no. 1, pp. 31–41, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. L. M. Medina and R. Jordano, “Survival of constitutive microflora in commercially fermented milk containing bifidobacteria during refrigerated storage,” Journal of Food Protection, vol. 56, pp. 731–733, 1994.
  42. S. A. Ibrahim and A. Bezkorovainy, “Growth-promoting factors for Bifidobacterium longum,” Journal of Food Science, vol. 59, no. 1, pp. 189–191, 1994. View at Scopus
  43. K. J. Heller, “Probiotic bacteria in fermented foods: product characteristics and starter organisms,” The American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 374S–379S, 2001. View at Scopus
  44. A. Samona, R. K. Robinson, and S. Marakis, “Acid production by bifidobacteria and yoghurt bacteria during fermentation and storage of milk,” Food Microbiology, vol. 13, no. 4, pp. 275–280, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Lönnerdal, “Nutritional and physiological significance of human milkproteins,” The American Journal of Clinical Nutrition, vol. 77, pp. 1537S–1543S, 2003.
  46. C. C. Almeida, S. L. S. Lorena, C. R. Pavan, H. M. I. Akasaka, and M. A. Mesquita, “Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients,” Nutrition in Clinical Practice, vol. 27, no. 2, pp. 247–251, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. S. R. Yoo, Y. J. Kim, D. Y. Park et al., “Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-inducedobesity,” Obesity, 2013. View at Publisher · View at Google Scholar
  48. R. R. N. Ferraz, N. C. Marques, L. Froeder et al., “Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients,” Urological Research, vol. 37, no. 2, pp. 95–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Thomas, D. Metzke, J. Schmitz, Y. Dörffel, and D. C. Baumgart, “Anti-inflammatory effects of Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn's disease and ulcerative colitis,” The American Journal of Physiology, vol. 301, no. 6, pp. G1083–G1092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. H. M. Zhao, X. Y. Huang, Z. Q. Zuo et al., “Probiotics increase T regulatory cells and reduce severity of experimental colitis in mice,” World Journal of Gastroenterology, vol. 19, no. 5, pp. 742–749, 2013. View at Publisher · View at Google Scholar
  51. P. Ducrotté, P. Sawant, and V. Jayanthi, “Clinical trial: Lactobacillus plantarum 299v (DSM, 9843) improves symptoms of irritable bowel syndrome,” World Journal of Gastroenterology, vol. 18, no. 30, pp. 4012–4018, 2012. View at Publisher · View at Google Scholar
  52. K. Wickens, P. Black, T. V. Stanley et al., “A protective effect of Lactobacillus rhamnosus HN001 against eczema in the first 2 years of life persists to age 4years,” Clinical and Experimental Allergy, vol. 42, no. 7, pp. 1071–1079, 2012. View at Publisher · View at Google Scholar
  53. Y. Han, B. Kim, J. Ban et al., “A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis,” Pediatric Allergy and Immunology, vol. 23, no. 7, pp. 667–673, 2012. View at Publisher · View at Google Scholar
  54. T. Y. Lin, C. J. Chen, L. K. Chen, S. H. Wen, and R. H. Jan, “Effect of probiotics on allergic rhinitis in df, dp or dust-sensitive children: a randomized double blind controlled trial,” Indian Pediatrics, vol. 50, no. 2, pp. 209–213, 2013. View at Publisher · View at Google Scholar
  55. Y.-S. Chen, Y.-L. Lin, R.-L. Jan, H.-H. Chen, and J.-Y. Wang, “Randomized placebo-controlled trial of lactobacillus on asthmatic children with allergic rhinitis,” Pediatric Pulmonology, vol. 45, no. 11, pp. 1111–1120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. E. C. Dinleyici, N. Dalgic, S. Guven et al., “The effect of a multispecies synbiotic mixture on the duration of diarrhea and length of hospital stay in children with acute diarrhea in Turkey: single blinded randomized study,” European Journal of Pediatrics, vol. 172, no. 4, pp. 459–464, 2013.
  57. K. Ganguli, D. Meng, S. Rautava, L. Lu, W. A. Walker, and N. Nanthakumar, “Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation,” The American Journal of Physiology, vol. 304, no. 2, pp. G132–G141, 2013. View at Publisher · View at Google Scholar
  58. K. Ahmad, F. Fatemeh, N. Mehri, and S. Maryam, “Probiotics for the treatment of pediatric helicobacter pylori infection: a randomized double blind clinical trial,” Iranian Journal of Pediatrics, vol. 23, no. 1, pp. 79–84, 2013.
  59. S. Rautava, S. Salminen, and E. Isolauri, “Specific probiotics in reducing the risk of acute infections in infancy: a randomised, double-blind, placebo-controlled study,” British Journal of Nutrition, vol. 101, no. 11, pp. 1722–1726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. A. H. Khalil and E. H. Mansour, “Alginate encapsulated bifidobacteria survival in mayonnaise,” Journal of Food Science, vol. 63, no. 4, pp. 702–705, 1998. View at Scopus
  61. Y. Kourkoutas, V. Xolias, M. Kallis, E. Bezirtzoglou, and M. Kanellaki, “Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production,” Process Biochemistry, vol. 40, no. 1, pp. 411–416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Kourkoutas, L. Bosnea, S. Taboukos, C. Baras, D. Lambrou, and M. Kanellaki, “Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces,” Journal of Dairy Science, vol. 89, no. 5, pp. 1439–1451, 2006. View at Scopus
  63. W. Krasaekoopt, B. Bhandari, and H. C. Deeth, “Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT and conventionally treated milk during storage,” Food Science and Technology, vol. 39, no. 2, pp. 177–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Saarela, I. Virkajärvi, L. Nohynek, A. Vaari, and J. Mättö, “Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals,” International Journal of Food Microbiology, vol. 112, no. 2, pp. 171–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Kailasapathy, “Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt,” Food Science and Technology, vol. 39, no. 10, pp. 1221–1227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Muthukumarasamy and R. A. Holley, “Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri,” International Journal of Food Microbiology, vol. 111, no. 2, pp. 164–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Ainsley Reid, C. P. Champagne, N. Gardner, P. Fustier, and J. C. Vuillemard, “Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles,” Journal of Food Science, vol. 72, no. 1, pp. M031–M037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. V. A.-E. King, H.-Y. Huang, and J.-H. Tsen, “Fermentation of tomato juice by cell immobilized Lactobacillus acidophilus,” Mid-Taiwan Journal of Medicine, vol. 12, no. 1, pp. 1–7, 2007. View at Scopus
  69. S.-S. Teh, A. Rosma, W.-N. Wan-Abdullah, and L. Min-Tze, “Evaluation of agrowastes as immobilizers for probiotics in soy milk,” Journal of Agricultural and Food Chemistry, vol. 57, no. 21, pp. 10187–10198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Ortakci and S. Sert, “Stability of free and encapsulated Lactobacillus acidophilus ATCC, 4356 in yogurt and in an artificial human gastric digestion system,” Journal of Dairy Science, vol. 95, no. 12, pp. 6918–6925, 2012. View at Publisher · View at Google Scholar
  71. S. Mandal, S. Hati, A. K. Puniya, R. Singh, and K. Singh, “Development of symbiotic milk chocolate using encapsulated Lactobacillus casei NCDC 298,” Journal of Food Processing and Preservation, 2012. View at Publisher · View at Google Scholar
  72. M. Sidira, G. Saxami, D. Dimitrellou, V. Santarmaki, A. Galanis, and Y. Kourkoutas, “Monitoring survival of Lactobacillus casei ATCC 393 in probiotic yogurts using an efficient molecular tool,” Journal of Dairy Science, vol. 96, pp. 3369–3377, 2013. View at Publisher · View at Google Scholar
  73. L. Saucier and C. Champagne, “Immobilised-cell technology and meat processing,” in Applications of Cell Immobilisation Biotechnology, V. Nedovic and R. Willaert, Eds., pp. 337–353, 2005.
  74. T. Heidebach, P. Först, and U. Kulozik, “Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins,” Food Hydrocolloids, vol. 23, no. 7, pp. 1670–1677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Heidebach, P. Först, and U. Kulozik, “Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells,” International Dairy Journal, vol. 19, no. 2, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. S. B. Doherty, V. L. Gee, R. P. Ross, C. Stanton, G. F. Fitzgerald, and A. Brodkorb, “Efficacy of whey protein gel networks as potential viability-enhancing scaffolds for cell immobilization of Lactobacillus rhamnosus GG,” Journal of Microbiological Methods, vol. 80, no. 3, pp. 231–241, 2010. View at Scopus
  77. V. Nedovic, A. Kalusevic, V. Manojlovic, S. Levic, and B. Bugarski, “An overview of encapsulation technologies for food applications,” in Procedia Food Science, pp. 1806–1815, 2011.
  78. C. Champagne, B. Lee, and L. Saucier, “Immobilization of cells and enzymes for fermented dairy or meat products,” in Encapsulation Technologies for Active Food Ingredients and Food Processing, N. J. Zuidam and V. A. Nedovic, Eds., pp. 345–365, 2010.
  79. S. E. Gilliland, S. S. Reilly, G. B. Kim, and H. S. Kim, “Viability during storage of selected probiotic lactobacilli and bifidobacteria in a yogurt-like product,” Journal of Food Science, vol. 67, no. 8, pp. 3091–3095, 2002. View at Scopus
  80. G. Godward and K. Kailasapathy, “Viability and survival of free, encapsulated and co-encapsulated probiotic bacteria in ice cream,” Milchwissenschaft, vol. 58, no. 3-4, pp. 161–164, 2003. View at Scopus
  81. Y.-C. Wang, R.-C. Yu, and C.-C. Chou, “Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks,” Food Microbiology, vol. 19, no. 5, pp. 501–508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Stanton, G. Gardiner, H. Meehan et al., “Market potential for probiotics,” The American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 476S–483S, 2001. View at Scopus
  83. C. Daly and R. Davis, “The biotechnology of lactic acid bacteria with emphasis on applications in food safety and human health,” Agricultural and Food Science, vol. 7, no. 2, pp. 219–250, 1998. View at Scopus
  84. A. C. Ouwehand, B. Bianchi Salvadori, R. Fondén, G. Mogensen, S. Salminen, and R. Sellars, “Health effects of probiotics and culture-containing dairy products in humans,” Bulletin International Dairy Federation, vol. 380, pp. 4–19, 2003.
  85. H. Sunohara, T. Ohno, N. Shibata, and K. Seki, “Process for producing capsule and capsule obtained thereby,” US Patent, vol. 5, pp. 478–570, 1995.
  86. K. Adhikari, A. Mustapha, I. U. Grün, and L. Fernando, “Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage,” Journal of Dairy Science, vol. 83, no. 9, pp. 1946–1951, 2000. View at Scopus
  87. N. P. Shah and R. R. Ravula, “Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts,” Australian Journal of Dairy Technology, vol. 55, no. 3, pp. 139–144, 2000. View at Scopus
  88. W. Sun and M. W. Griffiths, “Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads,” International Journal of Food Microbiology, vol. 61, no. 1, pp. 17–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. M. L. Moya, M. Morley, O. Khanna, E. C. Opara, and E. M. Brey, “Stability of alginate microbead properties in vitro,” Journal of Materials Science, vol. 23, no. 4, pp. 903–912, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. W. Krasaekoopt, B. Bhandari, and H. Deeth, “Evaluation of encapsulation techniques of probiotics for yoghurt,” International Dairy Journal, vol. 13, no. 1, pp. 3–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. C. P. Champagne and P. Fustier, “Microencapsulation for the improved delivery of bioactive compounds into foods,” Current Opinion in Biotechnology, vol. 18, no. 2, pp. 184–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Burgain, C. Gaiani, M. Linder, and J. Scher, “Encapsulation of probiotic living cells: from laboratory scale to industrial applications,” Journal of Food Engineering, vol. 104, no. 4, pp. 467–483, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. V. Manolović, V. Nedovic, K. Kailasapathy, and J. N. Juidam, “Encapsulation of probiotics for use in food products,” in Encapsulation Technologies for Active Food Ingredients and Food Processing, J. N. Juidam and V. Nedovic, Eds., pp. 269–302, Springer, 2010.
  94. U. Prüsse, L. Bilancetti, M. Bučko et al., “Comparison of different technologies for alginate beads production,” Chemical Papers, vol. 62, no. 4, pp. 364–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. J. Chen and K. N. Chen, “Applications of probiotic encapsulation in dairy products,” in Encapsulation and Controlled Release Technologies in Food Systems, J. M. Lakkis, Ed., pp. 83–107, John Wiley & Sons, New York, NY, USA, 2007.
  96. K. Adhikari, A. Mustapha, and I. U. Grün, “Survival and metabolic activity of microencapsulated Bifidobacterium in stirred yogurt,” Journal of Food Science, vol. 68, no. 1, pp. 275–280, 2003. View at Scopus
  97. A. Talwalkar and K. Kailasapathy, “Effect of microencapsulation on oxygen toxicrty in probiotic bacteria,” Australian Journal of Dairy Technology, vol. 58, no. 1, pp. 36–39, 2003. View at Scopus
  98. A. Talwalkar and K. Kailasapathy, “A review of oxygen toxicity in probiotic yoghurts: influence on the survival of probiotic bacteria and protective techniques,” Comprehensive Reviews in Food Science and Food Safety, vol. 3, pp. 117–124, 2004.
  99. L. D. McMaster, S. A. Kokott, S. J. Reid, and V. R. Abratt, “Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140,” International Journal of Food Microbiology, vol. 102, no. 2, pp. 231–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Capela, T. K. C. Hay, and N. P. Shah, “Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt,” Food Research International, vol. 39, no. 2, pp. 203–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Mandal, A. K. Puniya, and K. Singh, “Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298,” International Dairy Journal, vol. 16, no. 10, pp. 1190–1195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Picot and C. Lacroix, “Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt,” International Dairy Journal, vol. 14, no. 6, pp. 505–515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Ainsley Reid, J. C. Vuillemard, M. Britten, Y. Arcand, E. Farnworth, and C. P. Champagne, “Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model,” Journal of Microencapsulation, vol. 22, no. 6, pp. 603–619, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. A. K. Anal and H. Singh, “Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery,” Trends in Food Science & Technology, vol. 18, no. 5, pp. 240–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. D. Livney, “Milk proteins as vehicles for bioactives,” Current Opinion in Colloid and Interface Science, vol. 15, no. 1-2, pp. 73–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. S. B. Doherty, V. L. Gee, R. P. Ross, C. Stanton, G. F. Fitzgerald, and A. Brodkorb, “Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection,” Food Hydrocolloids, vol. 25, no. 6, pp. 1604–1617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. N. Betoret, L. Puente, M. J. Díaz et al., “Development of probiotic-enriched dried fruits by vacuum impregnation,” Journal of Food Engineering, vol. 56, no. 2-3, pp. 273–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. S. M. Alzamora, D. Salvatori, M. S. Tapia, A. López-Malo, J. Welti-Chanes, and P. Fito, “Novel functional foods from vegetable matrices impregnated with biologically active compounds,” Journal of Food Engineering, vol. 67, no. 1-2, pp. 205–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Mattila-Sandholm, P. Myllärinen, R. Crittenden, G. Mogensen, R. Fondén, and M. Saarela, “Technological challenges for future probiotic foods,” International Dairy Journal, vol. 12, no. 2-3, pp. 173–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. L. A. Bosnea, Y. Kourkoutas, N. Albantaki, C. Tzia, A. A. Koutinas, and M. Kanellaki, “Functionality of freeze-dried L. casei cells immobilized on wheat grains,” Food Science and Technology, vol. 42, no. 10, pp. 1696–1702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Charalampopoulos, S. S. Pandiella, and C. Webb, “Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates,” Journal of Applied Microbiology, vol. 92, no. 5, pp. 851–859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. D. Charalampopoulos, S. S. Pandiella, and C. Webb, “Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions,” International Journal of Food Microbiology, vol. 82, no. 2, pp. 133–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Plessas, M. Trantallidi, A. Bekatorou, M. Kanellaki, P. Nigam, and A. A. Koutinas, “Immobilization of kefir and Lactobacillus casei on brewery spent grains for use in sourdough wheat bread making,” Food Chemistry, vol. 105, no. 1, pp. 187–194, 2007. View at Publisher · View at Google Scholar · View at Scopus