About this Journal Submit a Manuscript Table of Contents
Journal of Nanoparticles
Volume 2013 (2013), Article ID 507161, 7 pages
http://dx.doi.org/10.1155/2013/507161
Research Article

Sol-Gel Synthesis of TiO2/SiO2 and ZnO/SiO2 Composite Films and Evaluation of Their Photocatalytic Activity towards Methyl Green

Department of Chemistry, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India

Received 31 January 2013; Accepted 2 March 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 V. L. Chandraboss et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, “Toward greener nanosynthesis,” Chemical Reviews, vol. 107, no. 6, pp. 2228–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Hutchison, “Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology,” ACS Nano, vol. 2, no. 3, pp. 395–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. DeSimone, “Practical approaches to green solvents,” Science, vol. 297, no. 5582, pp. 799–803, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Raveendran, J. Fu, and S. L. Wallen, “Completely “Green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. F. J. Green, The Sigma–Aldrih Handbook of Stains, Dyes, and Indicators, Aldrich Chemical, Milwaukee, Wis, USA, 1990.
  6. T. Geethakrishnan and P. K. Palanisamy, “Degenerate four-wave mixing experiments in Methyl green dye-doped gelatin film,” Optik, vol. 117, no. 6, pp. 282–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Behnajady, N. Modirshahla, and R. Hamzavi, “Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst,” Journal of Hazardous Materials, vol. 133, no. 1–3, pp. 226–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Mills, C. E. Holland, R. H. Davies, and D. Worsely, “Photo mineralization of salicylic acid: a kinetic study,” Journal of Photochemistry and Photobiology A, vol. 83, pp. 257–263, 1994.
  9. S. K. Kansal, M. Singh, and D. Sud, “Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts,” Journal of Hazardous Materials, vol. 141, no. 3, pp. 581–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Wei, Y. Huang, J. Wu, et al., “Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties,” Journal of Hazardous Materials, vol. 248, pp. 202–210, V.
  11. T. Miyata, S. Tsukada, and T. Minami, “Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation,” Thin Solid Films, vol. 496, no. 1, pp. 136–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Wang, X. Wu, W. Qin, and Z. Jiang, “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell,” Electrochimica Acta, vol. 53, no. 4, pp. 1883–1889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. X. H. Wu, Z. H. Jiang, L. H. Liu, X. D. Li, and X. G. Hu, “TiO2 ceramic films prepared by micro-plasma oxidation method for photodegradation of rhodamine B,” Materials Chemistry and Physics, vol. 80, no. 1, pp. 39–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Karuppuchamy, N. Suzuki, S. Ito, and T. Endo, “Enhanced efficiency of dye sensitized solar cells by UV-O3 treatment of TiO2 layer,” Current Applied Physics, vol. 9, pp. 243–248, 2009.
  15. D. L. Liao, C. A. Badour, and B. Q. Liao, “Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange,” Journal of Photochemistry and Photobiology A, vol. 194, no. 1, pp. 11–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Zhang and Q. Liu, “Preparation and characterization of titania photocatalyst co-doped with boron, nickel, and cerium,” Materials Letters, vol. 62, no. 17-18, pp. 2589–2592, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Andronic and A. Duta, “The influence of TiO2 powder and film on the photodegradation of methyl orange,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 1078–1082, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Stambolova, V. Blaskov, I. N. Kuznetsova, N. Kostova, and S. Vassilev, “Effect of the thermal treatment on the morphology and optical properties of nanosized TiO2 films,” Journal of Optoelectronics and Advanced Materials, vol. 13, pp. 381–386, 2011.
  19. B. H. Kim, J. Y. Lee, Y. H. Choa, M. Higuchi, and N. Mizutani, “The effect of target density and its morphology on TiO2 thin films,” Materials Science and Engineering B, vol. 107, pp. 289–294, 2004.
  20. T. K. Ghorai, D. Dhak, S. K. Biswas, S. Dalai, and P. Pramanik, “Photocatalytic oxidation of organic dyes by nano-sized metal molybdate incorporated titanium dioxide (MxMoxTi1xO6) (M = Ni, Cu, Zn) photocatalysts,” Journal of Molecular Catalysis A, vol. 273, no. 1-2, pp. 224–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Poulios, D. Makri, and X. Prohaska, “Photocatalytic treatment of olive milling wastewater: oxidation of protocatechuic acid,” GLOBAL NEST, vol. 1, pp. 55–62, 1999.
  22. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 65–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. C. A. K. Gouvêa, F. Wypych, S. G. Moraes, N. Durán, N. Nagata, and P. Peralta-Zamora, “Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution,” Chemosphere, vol. 40, no. 4, pp. 433–440, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Lizama, J. Freer, J. Baeza, and H. D. Mansilla, “Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions,” Catalysis Today, vol. 76, no. 2–4, pp. 235–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Lathasree, A. N. Rao, B. Sivasankar, V. Sadasivam, and K. Rengaraj, “Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions,” Journal of Molecular Catalysis A, vol. 223, no. 1-2, pp. 101–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. L. B. Khalil, W. E. Mourad, and M. W. Rophael, “Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination,” Applied Catalysis B, vol. 17, no. 3, pp. 267–273, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Huang, Y. Wei, J. Wu, et al., “Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2−xNy coupled photocatalysts,” Applied Catalysis B, vol. 123, pp. 9–17, 2012.
  28. S. Sakthivel, B. Neppolian, M. Palanichamy, B. Arabindoo, and V. Murugesan, “Photocatalytic degradation of leather dye, Acid green 16 using ZnO in the slurry and thin film forms,” Indian Journal of Chemical Technology, vol. 6, no. 3, pp. 161–165, 1999. View at Scopus
  29. I. Poulios and I. Tsachpinis, “Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides,” Journal of Chemical Technology and Biotechnology, vol. 74, pp. 349–357, 1999.
  30. S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, “Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation,” Journal of Photochemistry and Photobiology B, vol. 104, no. 3, pp. 425–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Stambolova, M. Shipochka, V. Blaskov, A. Loukanovb, and S. Vassilevc, “Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye,” Journal of Photochemistry and Photobiology B, vol. 117, pp. 19–26, 2012.
  32. G. Torres Delgado, C. I. Zúñiga Romero, S. A. Mayén Hernández, R. Castanedo Péreza, and O. Zelaya Angel, “Optical and structural properties of the sol– gel-prepared ZnO thin films and their effect on the photocatalytic activity,” Solar Energy Materials and Solar Cells, vol. 93, no. 1, pp. 55–59, 2009.
  33. X. Zhang and H. Zheng, “Synthesis of TiO2-doped SiO2 composite films and its applications,” Bulletin of Materials Science, vol. 32, pp. 787–790, 2008.
  34. A. Mahyar, M. A. Behnajady, and N. Modirshahla, “Enhanced photocatalytic degradation of C.I. Basic violet 2 using TiO2-SiO2 composite nanoparticles,” Photochemistry and Photobiology, vol. 87, no. 4, pp. 795–801, 2011. View at Publisher · View at Google Scholar · View at Scopus