About this Journal Submit a Manuscript Table of Contents
Journal of Nanoparticles
Volume 2013 (2013), Article ID 535901, 12 pages
http://dx.doi.org/10.1155/2013/535901
Review Article

Gold Nanoparticles and Nanocomposites in Clinical Diagnostics Using Electrochemical Methods

1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida 201303, India
2Department of Chemistry, Pusan National University, Busan 609-735, Republic of Korea
3Institute of BioPhysio Sensor Technology, Pusan National University, Busan 609-735, Republic of Korea
4Faculty of Nanotechnology and Advanced Materials, HMC, and Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea
5Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, India
6Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India

Received 30 November 2012; Accepted 5 February 2013

Academic Editor: Young-Seok Shon

Copyright © 2013 Pranjal Chandra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Progress in Solid State Chemistry, vol. 31, no. 1-2, pp. 5–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Suryanarayana and C. C. Koch, “Nanocrystalline materials—current research and future directions,” Hyperfine Interactions, vol. 130, no. 1–4, pp. 5–44, 2000. View at Scopus
  3. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Elsevier, 2000.
  4. G. M. Gadd, “Metals, minerals and microbes: geomicrobiology and bioremediation,” Microbiology, vol. 156, pp. 609–643, 2010.
  5. J. D. Bryan and D. R. Gamelin, “Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications,” Progress in Inorganic Chemistry, vol. 54, pp. 47–126, 2005. View at Scopus
  6. E. R. Hitzky, K. Ariga, and Y. Lvov, Bio-Inorganic Hybrid Nanomaterials—Strategies, Syntheses, Characterization and Application, Wiley-VCH, 2008.
  7. Y. Yin and A. Alivisatos, “Colloidal nanocrystal synthesis and the organic-inorganic interface,” Nature, vol. 437, pp. 664–670, 2005.
  8. C. M. Lieber, “Semiconductor nanowires: a platform for nanoscience and nanotechnology,” MRS Bulletin, vol. 36, pp. 1052–1063, 2011.
  9. T. Hillie and M. Hlophe, “Nanotechnology and the challenge of clean water,” Nature Nanotechnology, vol. 2, no. 11, pp. 663–664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Khin, A. S. Nair, V. J. Babu, R. Murugan, and S. Ramakrishna, “A review on nanomaterials for environmental remediation,” Energy & Environmental Science, vol. 5, pp. 8075–8109, 2012.
  11. P. J. Vikesland and K. R. Wigginton, “Nanomaterial enabled biosensors for pathogen monitoring—a review,” Environmental Science & Technology, vol. 44, pp. 3656–3669, 2010.
  12. A. Rodriguez, “Activation of gold nanoparticles on titania: a novel DeSOx catalyst,” ACS Symposium Series, vol. 890, pp. 205–209, 2004.
  13. X. Wang, C. Wang, L. Cheng, S.-T Lee, and Z. Liu, “Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy,” Journal of the American Chemical Society, vol. 134, pp. 7414–7422, 2012.
  14. Y. Su, X. Wei, F. Peng et al., “Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction,” Nano Letters, vol. 12, pp. 1845–1850, 2012.
  15. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145–181, 1857.
  16. G. T. Beilby, “The effects of heat and of solvents on thin films of metal,” Proceedings of the Royal Society A, vol. 72, pp. 226–235, 1903.
  17. V. V. Mody, R. Siwale, A. Singh, and H. R. Mody, “Introduction to metallic nanoparticles,” Journal of Pharmacy and Bioallied Sciences, vol. 2, pp. 282–289, 2010.
  18. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angewandte Chemie, vol. 49, pp. 3280–3294, 2010.
  19. M. A. Hayat, Colloidal Gold: Principles, Methods, and Applications, Academic Press, San Diego, Calif, USA, 1989.
  20. D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, “Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics,” Journal of the Electrochemical Society, vol. 150, no. 7, pp. G412–G417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Stuchinskaya, M. Moreno, M. J. Cook, D. R. Edwards, and D. A. Russell, “Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates,” Photochemical and Photobiological Sciences, vol. 10, no. 5, pp. 822–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. D. Brown, P. Nativo, J. A. Smith et al., “Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin,” Journal of the American Chemical Society, vol. 132, no. 13, pp. 4678–4684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. S. S. R. Kumar, Nanomaterials for Biosensors, John Wiley & Sons, 2007.
  24. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chemical Reviews, vol. 112, pp. 2739–2779, 2012.
  25. S. D. Perrault and W. C. W. Chan, “In vivo assembly of nanoparticle components to improve targeted cancer imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 25, pp. 11194–11199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Peng, U. Tisch, O. Adams et al., “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nature Nanotechnology, vol. 4, pp. 669–673, 2009.
  27. D. T. Thompson, “Using gold nanoparticles for catalysis,” Nano Today, vol. 2, no. 4, pp. 40–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Z.-J. Zhang, C.-X. Wan, and Y. Wang, “Fluorescent property of gold nanoparticles with different surface structures,” Chinese Journal of Chemical Physics, vol. 20, p. 796, 2007.
  29. D. L. Feldheim and C. A. Foss, Metal Nanoparticles: Synthesis, Characterization, and Applications, Marcel Dekker, New York, NY, USA, 2002.
  30. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, “Toward greener nanosynthesis,” Chemical Reviews, vol. 107, no. 6, pp. 2228–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chemical Reviews, vol. 107, no. 11, pp. 4797–4862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chemical Reviews, vol. 105, no. 4, pp. 1547–1562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Xu, M. S. Han, and C. A. Mirkin, “A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition,” Angewandte Chemie, vol. 46, no. 19, pp. 3468–3470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Lee, P. A. Ulmann, M. S. Han, and C. A. Mirkin, “A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine,” Nano Letters, vol. 8, no. 2, pp. 529–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Podsiadlo, V. A. Sinani, J. H. Bahng, N. W. S. Kam, J. Lee, and N. A. Kotov, “Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent,” Langmuir, vol. 24, pp. 568–574, 2008.
  37. Y. H. Chen, C. Y. Tsai, P. Y. Huang et al., “Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model,” Molecular Pharmaceutics, vol. 4, no. 5, pp. 713–722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. G. F. Paciotti, L. Myer, D. Weinreich et al., “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery, vol. 11, no. 3, pp. 169–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. D. J. Javier, N. Nitin, M. Levy, A. Ellington, and R. Richards-Kortum, “Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging,” Bioconjugate Chemistry, vol. 19, no. 6, pp. 1309–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Aaron, N. Nitin, K. Travis et al., “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” Journal of Biomedical Optics, vol. 12, no. 3, Article ID 034007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Lee, E. J. Cha, K. Park et al., “A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination,” Angewandte Chemie, vol. 47, no. 15, pp. 2804–2807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Letters, vol. 5, no. 5, pp. 829–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. G. von Maltzahn, J.-H. Park, A. Agrawal et al., “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Research, vol. 69, no. 9, pp. 3892–3900, 2009.
  44. Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, and C. Burda, “Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer,” Journal of the American Chemical Society, vol. 130, no. 32, pp. 10643–10647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” Journal of American Chemical Society, vol. 124, pp. 14316–14317, 2002.
  46. Y. Sun and Y. Xia, “Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium,” Journal of the American Chemical Society, vol. 126, no. 12, pp. 3892–3901, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. S. H. Yu, H. Cölfen, and Y. Mastai, “Formation and optical properties of gold nanoparticles synthesized in the presence of double-hydrophilic block copolymers,” Journal of Nanoscience and Nanotechnology, vol. 4, no. 3, pp. 291–298, 2004.
  48. T. Sakai and P. Alexandridis, “Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature,” Langmuir, vol. 20, no. 20, pp. 8426–8430, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Sun, S. Dong, and E. Wang, “One-step polyelectrolyte-based route to well-dispersed gold nanoparticles: synthesis and insight,” Materials Chemistry and Physics, vol. 96, no. 1, pp. 29–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Chen, W. P. Cai, C. H. Liang, and L. D. Zhang, “Synthesis of gold nanoparticles dispersed within pores of mesoporous silica induced by ultrasonic irradiation and its characterization,” Materials Research Bulletin, vol. 36, no. 1-2, pp. 335–342, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Housni, M. Ahmed, S. Liu, and R. Narain, “Monodisperse protein stabilized gold nanoparticles via a simple photochemical process,” Journal of Physical Chemistry C, vol. 112, no. 32, pp. 12282–12290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, “Facile photochemical synthesis of unprotected aqueous gold nanoparticles,” Journal of the American Chemical Society, vol. 128, no. 50, pp. 15980–15981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Meltzer, R. Resch, B. E. Koel et al., “Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates,” Langmuir, vol. 17, no. 5, pp. 1713–1718, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Mallick, Z. L. Wang, and T. Pal, “Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis,” Journal of Photochemistry and Photobiology A, vol. 140, no. 1, pp. 75–80, 2001. View at Scopus
  55. V. G. Pol, A. Gedanken, and J. Calderro-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chemistry of Materials, vol. 15, pp. 1111–1123, 2003.
  56. A. Dawson and P. V. Kamat, “Complexation of gold nanoparticles with radiolytically generated thiocyanate radicals ((SCN)2·),” Journal of Physical Chemistry B, vol. 104, no. 50, pp. 11842–11846, 2000. View at Scopus
  57. E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New Journal of Chemistry, vol. 22, no. 11, pp. 1257–1265, 1998. View at Scopus
  58. F. Mafune and T. Kondow, “Formation of small gold clusters in solution by laser excitation of interband transition,” Chemical Physics Letters, vol. 372, pp. 199–204, 2003.
  59. T. Ishii, H. Otsuka, K. Kataoka, and Y. Nagasaki, “Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by α-Biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)],” Langmuir, vol. 20, no. 3, pp. 561–564, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seeding growth for size control of 5–40 nm diameter gold nanoparticles,” Langmuir, vol. 17, no. 22, pp. 6782–6786, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Xiao, B. Shlyahovsky, I. Popov, V. Pavlov, and I. Willner, “Shape and color of Au nanoparticles follow biocatalytic processes,” Langmuir, vol. 21, no. 13, pp. 5659–5662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, and E. K. Hyde, “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen,” Journal of the American Chemical Society, vol. 75, no. 1, pp. 215–219, 1953. View at Scopus
  63. H. C. Brown and C. A. Brown, “New, Highly active metal catalysts for the hydrolysis of borohydride,” Journal of American Chemical Society, vol. 84, pp. 1493–1494, 1962.
  64. P. R. Selvakannan, S. Mandal, R. Pasricha, S. D. Adyanthaya, and M. Sastry, “One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface,” Chemical Communications, no. 13, pp. 1334–1335, 2002. View at Scopus
  65. S. Chen, K. Huang, and J. A. Stearns, “Alkanethiolate-protected palladium nanoparticles,” Chemistry of Materials, vol. 12, pp. 540–547, 2000.
  66. J. Turkevich, P. C. Stevenson, and J. Hillier, “The formation of colloidal gold,” Journal of Physical Chemistry, vol. 57, pp. 670–673, 1953.
  67. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature, vol. 241, pp. 20–22, 1973.
  68. N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chemistry of Materials, vol. 13, no. 7, pp. 2313–2322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Carrot, J. C. Valmalette, C. J. G. Plummer et al., “Gold nanoparticle synthesis in graft copolymer micelles,” Colloid and Polymer Science, vol. 276, no. 10, pp. 853–859, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, and P. Mukherjee, “The use of microorganisms for the formation of metal nanoparticles and their application,” Applied Microbiology and Biotechnology, vol. 69, no. 5, pp. 485–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Bali and A. T. Harris, “Biogenic synthesis of Au nanoparticles using vascular plants,” Industrial and Engineering Chemical Research, vol. 49, pp. 12762–12772, 2010.
  72. Y. Hao, Y. Chong, S. Li, and H. Yang, “Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols,” Journal of Physical Chemistry C, vol. 116, pp. 6512–6519, 2012.
  73. H. A. Keul, M. Moeller, and M. R. Bockstaller, “Effect of solvent isotopic replacement on the structure evolution of gold nanorods,” Journal of Physical Chemistry C, vol. 112, no. 35, pp. 13483–13487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Liu, M. Anand, and C. B. Roberts, “Synthesis and extraction of β-D-glucose-stabilized au nanoparticles processed into low-defect, wide-area thin films and ordered arrays using CO2-expanded liquids,” Langmuir, vol. 22, no. 9, pp. 3964–3971, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Larguinho and P. V. Baptisa, “Gold and silver nano particles for clinical diagnostics—from genomics and proteomics,” Journal of Proteomics, vol. 75, pp. 2811–2823, 2012.
  76. P. D'Orazio, “Biosensors in clinical chemistry—2011 update,” Clinica Chimica Acta, vol. 412, pp. 1749–1761, 2011.
  77. P. Chandra, H. B. Noh, M. S. Won, and Y. B. Shim, “Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer,” Biosensors and Bioelectronics, vol. 26, no. 11, pp. 4442–4449, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Kambayashi, J. Zhang, and M. Oyama, “Crystal growth of gold nanoparticles on indium tin oxides in the absence and presence of 3-mercaptopropyl-trimethoxysilane,” Crystal Growth and Design, vol. 5, no. 1, pp. 81–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. A. Umar and M. Oyama, “Formation of gold nanoplates on indium tin oxide surface: two-dimensional crystal growth from gold nanoseed particles in the presence of poly(vinylpyrrolidone),” Crystal Growth and Design, vol. 6, no. 4, pp. 818–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. R. N. Goyal, A. Aliumar, and M. Oyama, “Comparison of spherical nanogold particles and nanogold plates for the oxidation of dopamine and ascorbic acid,” Journal of Electroanalytical Chemistry, vol. 631, no. 1-2, pp. 58–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. F. K. Alanazi, A. A. Radwan, and A. A. Alsarra, “Biopharmaceutical applications of nanogold,” Saudi Pharmaceutical Journal, vol. 18, pp. 179–193, 2010.
  82. G. Lai, L. Wang, J. Wu, H. Ju, and F. Yan, “Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers,” Analytica Chimica Acta, vol. 721, pp. 1–6, 2012.
  83. R. N. Goyal, V. K. Gupta, M. Oyama, and N. Bachheti, “Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids,” Talanta, vol. 72, no. 3, pp. 976–983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. N. Goyal, M. A. Aziz, M. Oyama, S. Chatterjee, and A. R. S. Rana, “Nanogold based electrochemical sensor for determination of norepinephrine in biological fluids,” Sensors and Actuators B, vol. 153, no. 1, pp. 232–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. N. F. Atta, A. Galal, and E. H. El-Ads, “Gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodiumdodecyl sulfate,” Electrochimica Acta, vol. 69, pp. 102–111, 2012.
  86. G. Z. Hu, D. P. Zhang, W. L. Wu, and Z. S. Yang, “Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode,” Colloids and Surfaces B, vol. 62, no. 2, pp. 199–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Li and X. Lin, “Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode,” Sensors and Actuators B, vol. 124, no. 2, pp. 486–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Guo, S. Guo, Y. Fang, and S. Dong, “Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan,” Electrochimica Acta, vol. 55, no. 12, pp. 3927–3931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. R. N. Goyal, S. Bishnoi, H. Chasta, A. Md. Aziz, and M. Oyama, “Effect of surface modification of indium tin oxide by nanoparticles on the electrochemical determination of tryptophan,” Talanta, vol. 85, pp. 2626–2631, 2011.
  90. B. Haghighi, S. Bozorgzadeh, and L. Gorton, “Fabrication of a novel electrochemiluminescence glucose biosensor using Au nanoparticles decorated multiwalled carbon nanotubes,” Sensors and Actuators B, vol. 155, no. 2, pp. 577–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. K. R. Lim, J.-M. Park, H. N. Choi, and W.-Y. Lee, “Gold glyconanoparticle-based colorimetric bioassay for the determination of glucose in human serum,” Microchemical Journal, vol. 106, pp. 154–159, 2013.
  92. W. O. Ho, S. Krause, C. J. McNeil, et al., “Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation,” Analytical Chemistry, vol. 71, no. 10, pp. 1940–1946, 1999.
  93. W. Lai, D. Tang, X. Que, J. Zhuang, L. Fu, and G. Chen, “Enzyme-catalyzed silver deposition on irregular-shaped gold nanoparticles for electrochemical immunoassay of alpha-fetoprotein,” Analytica Chimica Acta, vol. 755, pp. 62–68, 2012.
  94. Y. Cui, H. Chen, L. Hou et al., “Nanogold-polyaniline-nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone,” Analytica Chimica Acta, vol. 738, pp. 76–84, 2012.
  95. A. P. F. Turner, I. Karube, and G. S. Wilson, Biosensors: Fundamentals and Applications, Oxford University Press, New York, NY, USA, 1987.
  96. D. P. Tang, R. Yuan, Y. Q. Chai et al., “Novel potentiometric immunosensor for hepatitis B surface antigen using a gold nanoparticle-based biomolecular immobilization method,” Analytical Biochemistry, vol. 333, no. 2, pp. 345–350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. M. P. Chatrathi, J. Wang, and G. E. Collins, “Sandwich electrochemical immunoassay for the detection of Staphylococcal enterotoxin B based on immobilized thiolated antibodies,” Biosensors and Bioelectronics, vol. 22, no. 12, pp. 2932–2938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Wang, L. Wang, H. Yuan et al., “Immunosensors based on layer-by-layer self-assembled Au colloidal electrode for the electrochemical detection of antigen,” Electroanalysis, vol. 16, no. 9, pp. 757–764, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Wang, L. Wang, H. Yuan et al., “Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reactions,” Biosensors and Bioelectronics, vol. 19, pp. 575–582, 2004.
  100. D. Tang, R. Yuan, Y. Chai, J. Dai, X. Zhong, and Y. Liu, “A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy,” Bioelectrochemistry, vol. 65, no. 1, pp. 15–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. G. K. Ahirwal and C. K. Mitra, “Gold nanoparticles based sandwich electrochemical immunosensor,” Biosensors and Bioelectronics, vol. 25, no. 9, pp. 2016–2020, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. G. C. Jensen, C. E. Krause, G. A. Sotzing, and J. F. Rusling, “Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein,” Physical Chemistry Chemical Physics, vol. 13, pp. 4888–4894, 2011.
  103. J. A. Ho, H. C. Chang, N. Y. Shih et al., “Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor,” Analytical Chemistry, vol. 82, pp. 5944–5950, 2010.
  104. Y. Zhu, J. I. Son, and Y. B. Shim, “Amplification strategy based on gold nanoparticle-decorated carbon nanotubes for neomycin immunosensors,” Biosensors and Bioelectronics, vol. 26, no. 3, pp. 1002–1008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. C.-C. Lin, L.-C. Chen, C.-H. Huang, S.-J. Ding, C.-C. Chang, and H.-C. Chang, “Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection,” Journal of Electroanalytical Chemistry, vol. 619, pp. 39–45, 2008.
  106. E. J. Nam, E. J. Kim, A. W. Wark, S. Rho, H. Kim, and H. J. Lee, “Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions,” Analyst, vol. 137, pp. 2011–2016, 2012.
  107. A. J. Saleh Ahammad, Y. H. Choi, K. Koh, J. H. Kim, J. J. Lee, and M. Lee, “Electrochemical detection of cardiac biomarker troponin I at gold nanoparticle-modified ITO electrode by using open circuit potential,” International Journal of Electrochemical Science, vol. 6, no. 6, pp. 1906–1916, 2011. View at Scopus
  108. K. Kerman, M. Chikae, S. Yamamura, and E. Tamiya, “Gold nanoparticle-based electrochemical detection of protein phosphorylation,” Analytica Chimica Acta, vol. 588, no. 1, pp. 26–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. A. de la Escosura-Muñiz, C. Parolo, F. Maran, and A. Mekoçi, “Size-dependent direct electrochemical detection of gold nanoparticles: application in magnetoimmunoassays,” Nanoscale, vol. 3, pp. 3350–3356, 2011.
  110. E. Vasilyeva, B. Lam, Z. Fang, M. D. Minden, E. H. Sargent, and S. O. Kelley, “Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture,” Angewandte Chemie, vol. 50, pp. 4137–4141, 2011.
  111. W. Choon, A. Koh, P. Chandra, D.-M. Kim, and Y.-B. Shim, “Electropolymerized self-assembled layer on gold nanoparticles: detection of inducible nitric oxide synthase in neuronal cell culture,” Analytical Chemistry, vol. 83, pp. 6177–6183, 2011.
  112. P. Chandra, W. C. Koh, H.-B. Noh, and Y.-B. Shim, “In vitro monitoring of i-NOS concentrations with an immunosensor: the inhibitory effect of endocrine disruptors on i-NOS release,” Biosensors and Bioelectronics, vol. 32, pp. 278–282, 2012.
  113. A. S. Afonso, B. Pérez-Lo'pez, R. C. Faria, et al., “Electrochemical detection of Salmonella using gold nanoparticles,” Biosensors and Bioelectronics, vol. 40, pp. 121–126, 2013.
  114. M. Maltez-da Costa, A. de la Escosura-Muñiz, C. Nogués, L. Barrios, E. Ibáñez, and A. Merkoçi, “Detection of circulating cancer cells using electrocatalytic gold nanoparticles,” Small, vol. 8, no. 23, pp. 3605–3612. View at Publisher · View at Google Scholar
  115. P. T. Went, A. Lugli, S. Meier et al., “Frequent EpCam protein expression in human carcinomas,” Human Pathology, vol. 35, no. 1, pp. 122–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. F. He, Q. Shen, H. Jiang et al., “Rapid identification and high sensitive detection of cancer cells on the gold nanoparticle interface by combined contact angle and electrochemical measurements,” Talanta, vol. 77, pp. 1009–1014, 2009.
  117. W. Hui, W. Tian, Y. Yan-Xia et al., “Construction of an electrochemical cytosensor based on polyaniline nanofiber/gold nanoparticle interface and application to detection of cancer cells,” Chinese Journal of Analytical Chemistry, vol. 40, pp. 184–190, 2012.