About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2011 (2011), Article ID 158434, 8 pages
http://dx.doi.org/10.1155/2011/158434
Research Article

Renewable Energy Driven by Le Chatelier's Principle, Enzyme Function, and Non-Additive Contributions to Ion Fluctuations: A Hypothesis in Biomechanical and Nanotechnology Energy Theory

Nanotoxicology Unit, Western Norway Research Institute, Fossahaugane Campus, 6851 Sogndal, Norway

Received 11 November 2010; Accepted 17 January 2011

Academic Editor: John A. Capobianco

Copyright © 2011 Sergio Manzetti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Cabral, “The California energy crisis,” Japan and the World Economy, vol. 14, no. 3, pp. 335–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. L. P. Rosa and L. L. B. Lomardo, “The Brazilian energy crisis and a study to support building efficiency legislation,” Energy and Buildings, vol. 36, no. 2, pp. 89–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Ramos and H. M. Ramos, “Sustainable application of renewable sources in water pumping systems: optimized energy system configuration,” Energy Policy, vol. 37, no. 2, pp. 633–643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Skoglund, M. Leijon, A. Rehn, M. Lindahl, and R. Waters, “On the physics of power, energy and economics of renewable electric energy sources—part II,” Renewable Energy, vol. 35, no. 8, pp. 1735–1740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Tegart, “Energy and nanotechnologies: priority areas for Australia's future,” Technological Forecasting and Social Change, vol. 76, no. 9, pp. 1240–1246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2373–2384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Zäch, C. Hägglund, D. Chakarov, and B. Kasemo, “Nanoscience and nanotechnology for advanced energy systems,” Current Opinion in Solid State and Materials Science, vol. 10, no. 3-4, pp. 132–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Mann, “Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions,” Nature Materials, vol. 8, no. 10, pp. 781–792, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. Lipowsky, J. Beeg, R. Dimova, S. Klumpp, and M. J. I. Müller, “Cooperative behavior of molecular motors: cargo transport and traffic phenomena,” Physica E, vol. 42, no. 3, pp. 649–661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. C. J. Huang, A. B. Artyukhin, N. Misra et al., “Carbon nanotube transistor controlled by a biological ion pump gate,” Nano Letters, vol. 10, no. 5, pp. 1812–1816, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. Y. Li-Smerin, D. H. Hackos, and K. J. Swartz, “A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel,” Neuron, vol. 25, no. 2, pp. 411–423, 2000. View at Scopus
  12. Y. Li-Smerin, D. H. Hackos, and K. J. Swartz, “α-Helical structural elements within the voltage-sensing domains of a K channel,” Journal of General Physiology, vol. 115, no. 1, pp. 33–49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Jiang, A. Lee, J. Chen et al., “X-ray structure of a voltage-dependent K+ channel,” Nature, vol. 423, no. 6935, pp. 33–41, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. Kubo, T. J. Baldwin, Y. N. Jan, and L. Y. Jan, “Primary structure and functional expression of a mouse inward rectifier potassium channel,” Nature, vol. 362, no. 6416, pp. 127–133, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. A. Alabi, M. I. Bahamonde, H. J. Jung, J. I. Kim, and K. J. Swartz, “Portability of paddle motif function and pharmacology in voltage sensors,” Nature, vol. 450, no. 7168, pp. 370–375, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. M. Seddon, H. M. Patel, S. L. Burkett, and S. Mann, “Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture,” Angewandte Chemie, vol. 41, no. 16, pp. 2988–2991, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. B. Brichkin, M. A. Osipova, T. M. Nikolaeva, and V. F. Razumov, “The hybrid nanosystem nanosized silver halide grain-dye in AOT reverse micelles,” High Energy Chemistry, vol. 39, no. 6, pp. 386–391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. D. Spoerke, G. D. Bachand, J. Liu, D. Sasaki, and B. C. Bunker, “Directing the polar organization of microtubules,” Langmuir, vol. 24, no. 14, pp. 7039–7043, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. T. M. Chen, A. C. Graham, M. Pepper, et al., “Direct observation of nonequilibrium spin population in quasi-one-dimensional nanostructures,” Nano Letters, vol. 10, no. 7, pp. 2330–2334, 2010.
  20. H. Liu, J. J. Schmidt, G. D. Bachand et al., “Control of a biomolecular motor-powered nanodevice with an engineered chemical switch,” Nature Materials, vol. 1, no. 3, pp. 173–178, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. Liu, E. D. Spoerke, M. Bachand, S. J. Koch, B. C. Bunker, and G. D. Bachand, “Biomolecular motor-powered self-assembly of dissipative nanocomposite rings,” Advanced Materials, vol. 20, no. 23, pp. 4476–4481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mann, “Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions,” Nature Materials, vol. 8, no. 10, pp. 781–792, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. E. J. Parra, G. A. Crespo, J. Riu, A. Ruiz, and F. X. Rius, “Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate,” Analyst, vol. 134, no. 9, pp. 1905–1910, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. L.. Górzny, A. S. Walton, M. Wnęk, P. G. Stockley, and S. D. Evans, “Four-probe electrical characterization of Pt-coated TMV-based nanostructures,” Nanotechnology, vol. 19, no. 16, Article ID 165704, 2008. View at Publisher · View at Google Scholar
  25. Z. Tang, N. A. Kotov, and M. Giersig, “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires,” Science, vol. 297, no. 5579, pp. 237–240, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. T. Tlusty and S. A. Safran, “Defect-induced phase separation in dipolar fluids,” Science, vol. 290, no. 5495, pp. 1328–1331, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Matsuura, T. Yomo, S. Trakulnaleamsai, Y. Ohashi, K. Yamamoto, and I. Urabe, “Nonadditivity of mutational effects on the properties of catalase I and its application to efficient directed evolution,” Protein Engineering, vol. 11, no. 9, pp. 789–795, 1998. View at Scopus