About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2011 (2011), Article ID 413512, 5 pages
http://dx.doi.org/10.1155/2011/413512
Research Article

A Novel Route for Development of Bulk Al/SiC Metal Matrix Nanocomposites

1Department of Mechanical Engineering, Konark Institute of Science & Technology, Bhubaneswar 752050, India
2Department of Consultancy & Quality, Central Tool Room & Training Center, Bhubaneswar 752024, India

Received 15 March 2011; Revised 5 May 2011; Accepted 6 May 2011

Academic Editor: Baoquan Sun

Copyright © 2011 Payodhar Padhi and Sachikanta Kar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. C. Kang and S. L. Chan, Materials Chemistry and Physics, vol. 65, p. 436, 2004.
  2. J. Hashim, L. Looney, and M. S. J. Hashmi, “Metal matrix composites: production by the stir casting method,” Journal of Materials Processing Technology, vol. 92-93, pp. 1–7, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Hashim, L. Looney, and M. S. J. Hashmi, “Particle distribution in cast metal matrix composites—part I,” Journal of Materials Processing Technology, vol. 123, no. 2, pp. 251–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Hashim, L. Looney, and M. S. J. Hashmi, “Particle distribution in cast metal matrix composites—part II,” Journal of Materials Processing Technology, vol. 123, no. 2, pp. 258–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ourdjini, K. C. Chew, and B. T. Khoo, “Settling of silicon carbide particles in cast metal matrix composites,” Journal of Materials Processing Technology, vol. 116, no. 1, pp. 72–76, 2001. View at Publisher · View at Google Scholar
  6. A. Kolsgaard and S. Brusethaug, “Settling of SiC particles in an AlSi7Mg melt,” Materials Science and Engineering A, vol. 173, no. 1-2, pp. 213–219, 1993.
  7. S. Charles and V. P. Arunachalam, “Effect of particle inclusions on the mechanical properties of composites fabricated by liquid metallurgy,” Indian Journal of Engineering and Materials Sciences, vol. 10, no. 4, pp. 301–305, 2003. View at Scopus
  8. Y. Yang, J. Lan, and X. Li, “Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy,” Materials Science and Engineering A, vol. 386, no. 1-2, pp. 284–290, 2004.
  9. B. S. Murty and K. Hono, “Al- Mg- and Fe-based nanocomposites by rapid solidification processing,” Transactions of the Indian Institute of Metals, vol. 58, no. 4, pp. 769–775, 2005. View at Scopus
  10. T. Hielscher, “Ultrasonic production of nano-size dispersions and emulsions,” in Proceedings of European Nanosystems Conference (ENS '05), Paris, France, December 2005.
  11. D. J. Flannigan and K. S. Suslick, “Plasma formation and temperature measurement during single-bubble cavitation,” Nature, vol. 434, no. 7029, pp. 52–55, 2005. View at Publisher · View at Google Scholar · View at PubMed
  12. K. S. Suslick, Ultrasound: Its Chemical, Physical, and Biological Effects, VCH, New York, NY, USA, 1988.
  13. G. I. Eskin, “Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys,” Ultrasonics Sonochemistry, vol. 8, no. 3, pp. 319–325, 2001. View at Publisher · View at Google Scholar
  14. G. I. Eskin, “Cavitation mechanism of ultrasonic melt degassing,” Ultrasonics Sonochemistry, vol. 2, no. 2, pp. S137–S141, 2001. View at Publisher · View at Google Scholar
  15. G. I. Eskin and D. G. Eskin, “Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt,” Ultrasonics Sonochemistry, vol. 10, no. 4-5, pp. 297–301, 2003. View at Publisher · View at Google Scholar · View at PubMed
  16. C. Vivés, “Progress in fluid flow research: turbulence and applied MHD,” in Effects of Oscillatory Electromagnetic Force Fields on Microstructure of Solidifying Aluminum Alloys, vol. 162, chapter 40, pp. 601–617, AIAA, 1998.
  17. G. Kaptay, “Interfacial criteria for producing metal matrix composites and ceramic particle stabilized metallic foams,” Materials Science Forum, vol. 414-415, pp. 419–424, 2003.