About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 106170, 6 pages
http://dx.doi.org/10.1155/2012/106170
Research Article

Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

Departamento de Física Aplicada, Universidad Autónoma de Madrid, Avdenia Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain

Received 2 February 2012; Accepted 21 February 2012

Academic Editor: Omer Nur

Copyright © 2012 G. Recio-Sánchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D) and three-dimensional (3D) devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5×5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures) or multilayers (for 3D structures), opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.