About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 106170, 6 pages
http://dx.doi.org/10.1155/2012/106170
Research Article

Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

Departamento de Física Aplicada, Universidad Autónoma de Madrid, Avdenia Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain

Received 2 February 2012; Accepted 21 February 2012

Academic Editor: Omer Nur

Copyright © 2012 G. Recio-Sánchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Physical Review B, vol. 19, no. 10, pp. 5057–5067, 1979. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059–2062, 1987. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 2008.
  4. K. Sakoda, Optical Properties of Photonic Crystals, Springer Verlag, New York, NY, USA, 2005.
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, pp. 2486–2489, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters, vol. 65, no. 25, pp. 3152–3155, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Yablonovitch, “Photonic band-gap structures,” Journal of the Optical Society of America B, vol. 10, no. 2, pp. 283–295, 1993. View at Scopus
  8. J. S. Foresi, P. R. Villeneuve, J. Ferrera et al., “Photonic-bandgap microcavities in optical waveguides,” Nature, vol. 390, no. 6656, pp. 143–145, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature, vol. 420, no. 6916, pp. 650–653, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Applied Physics Letters, vol. 83, no. 6, pp. 1074–1076, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Thèvenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2115–2122, 1999. View at Scopus
  12. C. C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” Journal of Vacuum Science and Technology B, vol. 13, no. 6, pp. 2696–2700, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, vol. 404, no. 6773, pp. 53–56, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films, vol. 125, no. 1-2, pp. 157–163, 1985. View at Scopus
  15. J. Garnett, “Colours in metal glasses and in metallic films,” Philosophical Transactions of the Royal Society of London A, vol. 203, pp. 385–420, 1904.
  16. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen,” Annalen der Physik, vol. 416, no. 7, pp. 636–664, 1935. View at Publisher · View at Google Scholar
  17. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Silicon-based visible light-emitting devices integrated into microelectronic circuits,” Nature, vol. 384, no. 6607, pp. 338–341, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters, vol. 57, no. 10, pp. 1046–1048, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Two-dimensional porous silicon photonic crystal light emitters,” in Proceedings of the Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (CLEO/QELS '06), May 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Cunin, T. A. Schmedake, J. R. Link et al., “Biomolecular screening with encoded porous-silicon photonic crystals,” Nature Materials, vol. 1, no. 1, pp. 39–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Jalkanen, V. Torres-Costa, J. Salonen et al., “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Optics Express, vol. 17, no. 7, pp. 5446–5456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Martín-Palma, M. Manso, M. Arroyo-Hernández, V. Torres-Costa, and J. M. Martínez-Duart, “Nanostructured-porous-silicon-based two-dimensional photonic crystals,” Applied Physics Letters, vol. 89, no. 5, Article ID 053126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical characterization of porous silicon films and multilayer filters,” Applied Physics A, vol. 79, no. 8, pp. 1919–1923, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. Martín-Palma, V. Torres-Costa, M. Arroyo-Hernández, M. Manso, J. Pérez-Rigueiro, and J. M. Martínez-Duart, “Porous silicon multilayer stacks for optical biosensing applications,” Microelectronics Journal, vol. 35, no. 1, pp. 45–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Optics Express, vol. 8, no. 3, pp. 173–190, 2001. View at Scopus
  26. A. Reynold, Translight Software, University of Glasgow, Glasgow, UK, 2000.