About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 237284, 12 pages
http://dx.doi.org/10.1155/2012/237284
Research Article

Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type

1Department of Civil and Environmental Engineering, University of Delware, Newark, DE 19716, USA
2Department of Environmental Engineering, Akdeniz University, Akdeniz 07058, Turkey
3Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

Received 15 May 2012; Accepted 24 July 2012

Academic Editor: Mallikarjuna Nadagouda

Copyright © 2012 D. M. Metzler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Lin, Y. W. Huang, X. D. Zhou, and Y. Ma, “In vitro toxicity of silica nanoparticles in human lung cancer cells,” Toxicology and Applied Pharmacology, vol. 217, pp. 252–259, 2006. View at Publisher · View at Google Scholar
  2. A. J. Wagner, C. A. Bleckmann, R. C. Murdock, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages,” Journal of Physical Chemistry B, vol. 111, no. 25, pp. 7353–7359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Bodo, G. Muzi, C. Bellucci et al., “Comparative in vitro studies on the fibrogenic effects of two samples of silica on epithelial bronchial cells,” Journal of Biological Regulators and Homeostatic Agents, vol. 21, no. 3-4, pp. 97–104, 2007. View at Scopus
  4. K. Van Hoecke, K. A. C. De Schamphelaere, P. Van der Meeren, S. Lucas, and C. R. Janssen, “Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area,” Environmental Toxicology and Chemistry, vol. 27, no. 9, pp. 1948–1957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology, vol. 230, no. 1, pp. 90–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Ji, Z. Long, and D. Lin, “Toxicity of oxide nanoparticles to the green algae Chlorella sp.,” Chemical Engineering Journal, vol. 170, pp. 525–530, 2011. View at Publisher · View at Google Scholar
  7. E. Pinto, T. C. S. Sigaud-Kutner, M. A. S. Leitão, O. K. Okamoto, D. Morse, and P. Colepicolo, “Heavy metal-induced oxidative stress in algae,” Journal of Phycology, vol. 39, no. 6, pp. 1008–1018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” Journal of Physical Chemistry, vol. 90, no. 12, pp. 2555–2560, 1986. View at Scopus
  9. Y. H. Tseng, H. Y. Lin, C. S. Kuo, Y. Y. Li, and C. P. Huang, “Thermostability of Nano-TiO2 and its photocatalytic activity,” Reaction Kinetics and Catalysis Letters, vol. 89, pp. 63–69, 2006. View at Publisher · View at Google Scholar
  10. S. Bakardjieva, J. Šubrt, V. Štengl, M. J. Dianez, and M. J. Sayagues, “Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase,” Applied Catalysis B, vol. 58, no. 3-4, pp. 193–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Lin, C. P. Huang, W. Li, C. Ni, S. I. Shah, and Y. H. Tseng, “Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol,” Applied Catalysis B, vol. 68, pp. 1–11, 2006. View at Publisher · View at Google Scholar
  12. C. Y. Liu and A. J. Bard, “Effect of excess charge on band energetics (optical absorption edge and carrier redox potentials) in small semiconductor particles,” Journal of Physical Chemistry, vol. 93, no. 8, pp. 3232–3237, 1989. View at Scopus
  13. J. M. Nedeljković, M. T. Nenadović, O. I. Mićić, and A. J. Nozik, “Enhanced photoredox chemistry in quantized semiconductor colloids,” Journal of Physical Chemistry, vol. 90, no. 1, pp. 12–13, 1986. View at Scopus
  14. U. Koch, A. Fojtik, H. Weller, and A. Henglein, “Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects,” Chemical Physics Letters, vol. 122, no. 5, pp. 507–510, 1985. View at Scopus
  15. F. Morazzoni, C. Canevali, N. Chiodini et al., “Nanostructured Pt-doped tin oxide films: sol-gel preparation, spectroscopic and electrical characterization,” Chemistry of Materials, vol. 13, no. 11, pp. 4355–4361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Hardman, “A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors,” Environmental Health Perspectives, vol. 114, no. 2, pp. 165–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kashiwada, “Distribution of nanoparticles in the see-through medaka (Oryzias latipes),” Environmental Health Perspectives, vol. 114, no. 11, pp. 1697–1702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. K. Adams, D. Y. Lyon, and P. J. J. Alvarez, “Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions,” Water Research, vol. 40, no. 19, pp. 3527–3532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. United States Environmental Protection Agency, “Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms,” Tech. Rep. EPA-821-R-02-013, United States Environmental Protection Agency, Office of Water, Washington, DC, USA, 2002.
  20. D. Metzler, Effect of Food-Borne Cadmium on the Reproduction of Ceriodaphina Dubia [M.S. thesis], University of Delaware, Newark, Del, USA, 2003.
  21. C. I. Weber, L. A. Fay, G. B. Collins, D. E. Rathke, and J. Tobin, “A review of methods for the analysis of chlorophyll in periphyton and plankton of marine and freshwater systems,” Tech. Rep. Technical bulletin OHSU-TB-15, Ohio State University Sea Grant Program, 1986.
  22. A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC, USA, 19th edition, 1995.
  23. P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, “Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism,” Applied and Environmental Microbiology, vol. 65, no. 9, pp. 4094–4098, 1999. View at Scopus
  24. United States Environmental Protection Agency, Toxicity Relationship Analysis Program. Version 1, United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-continent Ecology Division, Duluth, Minn, USA, 2002.
  25. A. M. M. Goncalves, D. R. de Figureueiredo, and M. J. Pereira, “The effects of different salinity concentrations on growth of three freshwater green algae,” Fresenius Environmental Bulletin, vol. 15, no. 11, pp. 1382–1386, 2006.
  26. S. H. Hsieh, K. P. Tsai, and C. Y. Chen, “The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata,” Water Research, vol. 40, no. 10, pp. 1957–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Kirchner, T. Liedl, S. Kudera et al., “Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles,” Nano Letters, vol. 5, no. 2, pp. 331–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. W. Gensemer and R. C. Playle, “The bioavailability and toxicity of aluminum in aquatic environments,” Critical Reviews in Environmental Science and Technology, vol. 29, no. 4, pp. 315–450, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. H. E. Allen, R. H. Hall, and T. D. Brisbin, “Metal speciation. Effects on aquatic toxicity,” Environmental Science and Technology, vol. 14, no. 4, pp. 441–443, 1980. View at Scopus
  30. D. Sparks, Environmental Soil Chemistry, Academic Press, New York, NY, USA, 2nd edition, 2003.
  31. M. Y. Lin, Interactions between Titanium Dioxide Nanoparticles and Algal Cells at Moderate Particle Concentration [M.S. thesis], University of Delaware, Newark, Del, USA, 2008.
  32. J. M. H. Verspagen, J. Passarge, K. D. Jöhnk et al., “Water management strategies against toxic Microcystis blooms in the Dutch delta,” Ecological Applications, vol. 16, no. 1, pp. 313–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. G. Wetzel and, Limnology, Saunders College, New York, NY, USA, 2nd edition, 1985.
  34. S.-F. Cheah, G. E. Brown Jr., and G. A. Parks, “XAFS spectroscopy study of Cu(II) sorption on amorphous SiO2 and gamma-Al2O3: effect of substrate and time on sorption complexes,” Journal of Colloid and Interface Science, vol. 208, no. 1, pp. 110–128, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. H. A. Speoher and H. W. Milner, “The chemical composition of Chlorella; effect of environmental conditions,” Plant Physiology, vol. 24, no. 1, pp. 120–149, 1949. View at Publisher · View at Google Scholar
  36. A. J. Maira, K. L. Yeung, C. Y. Lee, P. L. Yue, and C. K. Chan, “Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts,” Journal of Catalysis, vol. 192, no. 1, pp. 185–196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Keren, A. Berg, P. J. M. Van Kan, H. Levanon, and I. Ohad, “Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 4, pp. 1579–1584, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Inhibition of the repair of Photosystem II by oxidative stress in cyanobacteria,” Photosynthesis Research, vol. 84, no. 1–3, pp. 1–7, 2005. View at Publisher · View at Google Scholar
  39. T. E. Brown and F. L. Richardson, “The effect of growth environment on the physiology of algae: light intensity,” Journal of Phycology, vol. 4, pp. 38–54, 1968. View at Publisher · View at Google Scholar
  40. M. J. Behrenfeld, O. Prasil, M. Babin, and F. Bruyant, “In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis,” Journal of Phycology, vol. 40, no. 1, pp. 4–25, 2004. View at Scopus
  41. M. F. Colombo-Pallotta, E. García-Mendoza, and L. B. Ladah, “Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths,” Journal of Phycology, vol. 42, no. 6, pp. 1225–1234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Kessler, “Effect of manganese deficiency on growth and chlorophyll content of algae with and without hydrogenase,” Archiv für Mikrobiologie, vol. 63, no. 1, pp. 7–10, 1968. View at Publisher · View at Google Scholar
  43. K. Hristovski, A. Baumgardner, and P. Westerhoff, “Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media,” Journal of Hazardous Materials, vol. 147, no. 1-2, pp. 265–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Liang, Y. Qin, B. Hu, C. Li, T. Y. Peng, and Z. Jiang, “Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES,” Fresenius' Journal of Analytical Chemistry, vol. 368, no. 6, pp. 638–640, 2000. View at Scopus
  45. E. Vassileva, K. Hadjiivanov, T. Stoychev, and C. Daiev, “Chromium speciation analysis by solid-phase extraction on a high surface area TiO2,” Analyst, vol. 125, no. 4, pp. 693–698, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. W. Stumm and J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, John Wiley and Sons, New York, NY, USA, 3rd edition, 1996.
  47. M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,” Nature Immunology, vol. 3, no. 12, pp. 1129–1134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Drábková, B. Maršálek, and W. Admiraal, “Photodynamic therapy against cyanobacteria,” Environmental Toxicology, vol. 22, no. 1, pp. 112–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Y. Lee, C. Fortin, and P. G. Campbell, “Influence of chloride on silver uptake by two green algae, Pseudokirchneriella subcapitata and Chlorella pyrenoidosa,” Environmental Toxicology and Chemistry, vol. 23, no. 4, pp. 1012–1018, 2004. View at Publisher · View at Google Scholar
  50. I. M. Svishchev and A. Y. Plugatyr, “Hydroxyl radical in aqueous solution: computer simulation,” Journal of Physical Chemistry B, vol. 109, no. 9, pp. 4123–4128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Gao, R. Wahi, A. T. Kan, J. C. Falkner, V. L. Colvin, and M. B. Tomson, “Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH,” Langmuir, vol. 20, no. 22, pp. 9585–9593, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Wolfe-Simon, D. Grzebyk, O. Schofield, and P. G. Falkowski, “The role and evolution of superoxide dismutases in algae,” Journal of Phycology, vol. 41, no. 3, pp. 453–465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West, and V. L. Colvin, “Nano-C60 cytotoxicity is due to lipid peroxidation,” Biomaterials, vol. 26, no. 36, pp. 7587–7595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Valavanidis, T. Vlahogianni, M. Dassenakis, and M. Scoullos, “Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants,” Ecotoxicology and Environmental Safety, vol. 64, no. 2, pp. 178–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Kato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato, and Y. Butsugan, “Crystal structures of TiO2 thin coatings prepared from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic acid,” Journal of Materials Science, vol. 29, no. 22, pp. 5911–5915, 1994. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen, and T. Onishi, “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates,” The Journal of Physical Chemistry, vol. 91, no. 16, pp. 4305–4310, 1987. View at Publisher · View at Google Scholar
  57. K. Tanaka, M. F. V. Capule, and T. Hisanaga, “Effect of crystallinity of TiO2 on its photocatalytic action,” Chemical Physics Letters, vol. 187, no. 1-2, pp. 73–76, 1991. View at Scopus
  58. Z. Zhang, C. C. Wang, R. Zakaria, and J. Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” Journal of Physical Chemistry B, vol. 102, no. 52, pp. 10871–10878, 1998. View at Scopus
  59. J. K. Yang and A. P. Davis, “Competitive photocatalytic oxidation of Cu(II)—EDTA and Cd(II)—EDTA with illuminated TiO2,” Environmental Science and Technology, vol. 35, no. 17, pp. 3566–3570, 2001. View at Publisher · View at Google Scholar
  60. C. B. Almquist and P. Biswas, “Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity,” Journal of Catalysis, vol. 212, no. 2, pp. 145–156, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. H. J. Nam, T. Amemiya, M. Murabayashi, and K. Itoh, “Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates: the effects of Na+ and primary particle size,” Journal of Physical Chemistry B, vol. 108, no. 24, pp. 8254–8259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Blaise, F. Gagné, J. F. Férard, and P. Eullaffroy, “Ecotoxicity of selected nano-materials to aquatic organisms,” Environmental Toxicology, vol. 23, no. 5, pp. 591–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. C. D. Dong, Y. L. Liao, C. M. Kao, C. W. Chen, H. Y. Lin, and C. P. Huang, “Preparation of crystalline nanosized titania by microemulsion: evaluation of process variables,” Advanced Oxidation Technology, vol. 10, no. 2, pp. 399–404, 2007.
  64. Aerosil, September 2009, http://www.aerosil.com/wps/PA_1_2_1RD/downloadMsds?id=6.
  65. A. K. Arora and Kamaluddin, “Role of metal oxides in chemical evolution: interaction of ribose nucleotides with alumina,” Astrobiology, vol. 9, no. 2, pp. 165–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Bourikas, T. Hiemstra, and W. H. Van Riemsdijk, “Ion pair formation and primary charging behavior of titanium oxide (anatase and rutile),” Langmuir, vol. 17, no. 3, pp. 749–756, 2001. View at Publisher · View at Google Scholar · View at Scopus