About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 324380, 22 pages
http://dx.doi.org/10.1155/2012/324380
Review Article

A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics

1Department of Mechanical Engineering, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58105, USA
2Center for Micro and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076, Russia

Received 25 December 2011; Accepted 4 June 2012

Academic Editor: Kyoung Moon

Copyright © 2012 Justin M. Hoey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Halvorsen, P. Vaidya, M. Robinson, and D. L. Schulz, “Transforming a laser micromachiner into a direct-write tool for electronic materials,” Journal of MicroElectronics and Electronic Packaging, vol. 5, pp. 116–121, 2008.
  2. K. K. B. Hon, L. Li, and I. M. Hutchings, “Direct writing technology—advances and developments,” CIRP Annals, vol. 57, no. 2, pp. 601–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Liu and J. N. DuPont, “Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping,” Scripta Materialia, vol. 48, no. 9, pp. 1337–1342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Renn, G. Marquez, B. King, M. Essien, and W. Miller, “Flow-and laser-guided direct write of electronic and biological components,” in Direct-Write Technologies For Rapid Prototyping Applications, A. Pique and D. B. Chrisey, Eds., pp. 475–492, Academic Press, San Diego, Calif, USA, 2002.
  5. Mesoscribe Technologies, http://www.mesoscribe.com/.
  6. D. B. Chrisey, A. Pique, R. Modi, H. D. Wu, R. C. Y. Auyeung, and H. D. Young, “Direct writing of conformal mesoscopic electronic devices by MAPLE DW,” Applied Surface Science, vol. 168, no. 1–4, pp. 345–352, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Lutfurakhmanov, G. K. Loken, D. L. Schulz, and I. S. Akhatov, “Capillary-based liquid microdroplet deposition,” Applied Physics Letters, vol. 97, no. 12, Article ID 124107, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. I. S. Akhatov, J. M. Hoey, O. F. Swenson, and D. L. Schulz, “Aerosol flow through a long micro-capillary: collimated aerosol beam,” Microfluidics and Nanofluidics, vol. 5, no. 2, pp. 215–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Hoey, I. S. Akhatov, O. F. Swenson, and D. L. Schulz, “Convergent-divergent-convergent nozzle focusing of aerosol particles for micron-scale direct writing,” 2009/0053507, 2009.
  10. R. A. Sailer and J. M. Hoey, “Micro cold spray direct write technology for printed micro electronics applications,” US Patent 61/591, 365, 2012.
  11. S. Bhattacharya, A. Lutfurakhmanov, J. M. Hoey, O. F. Swenson, and R. A. Sailer, Micro Cold Spray Direct Write Process, ASME International Mechanical Engineering Congress and Exposition, Houston, Tex, USA, 2012.
  12. L. Qi, Aerosol printing of colloidal nanocrystals by aerodynamic focusing [Ph.D. thesis], Materials Science and Engineering, University of Minnesota, Minneapolis, Minn, USA, 2010.
  13. L. Qi, P. H. McMurry, D. J. Norris, and S. L. Girshick, “Impact dynamics of colloidal quantum dot solids,” Langmuir, vol. 27, no. 20, pp. 12677–12683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Girshick, “Aerosol processing for nanomanufacturing,” Journal of Nanoparticle Research, vol. 10, no. 6, pp. 935–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Qi, P. H. McMurry, D. J. Norris, and S. L. Girshick, “Micropattern deposition of colloidal semiconductor nanocrystals by aerodynamic focusing,” Aerosol Science and Technology, vol. 44, no. 1, pp. 55–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Renn, “Direct Write System,” USA Patent 7108894 B2, 2006.
  17. J. Hoey, D. Thompson, M. Robinson et al., “CAB-DW for 5 μm trace-width deposition of solar cell metallization top-contacts,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC '09), Philadelphia, Pa, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Schulz, J. M. Hoey, D. Thompson et al., “Collimated aerosol beam deposition: sub-5-μm resolution of printed actives and passives,” IEEE Transactions on Advanced Packaging, vol. 33, no. 2, pp. 421–427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and F. Fomin, Cold Spray Technology, Elsevier Science, 2007.
  20. R. G. Maev and V. Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray: Physics & Technology, Wiley-VCH, Weinheim, Germany, 2008.
  21. A. Papyrin, “Cold spray technology,” Advanced Materials and Processes, vol. 159, no. 9, pp. 49–51, 2001. View at Scopus
  22. Sono-Tek Homepage, http://www.sono-tek.com/.
  23. “Sonaer Ultrasonics Homepage,” 2011, http://www.sonozap.com/.
  24. S. C. Tsai, Y. L. Song, C. S. Tsai, Y. F. Chou, and C. H. Cheng, “Ultrasonic atomization using MHz silicon-based multiple-Fourier horn nozzles,” Applied Physics Letters, vol. 88, no. 1, Article ID 014102, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Ju, Y. Yamagata, H. Ohmori, and T. Higuchi, “High-frequency surface acoustic wave atomizer,” Sensors and Actuators A, vol. 145-146, no. 1-2, pp. 437–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Qi, L. Y. Yeo, and J. R. Friend, “Interfacial destabilization and atomization driven by surface acoustic waves,” Physics of Fluids, vol. 20, no. 7, Article ID 074103, 14 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Friend and L. Y. Yeo, “Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics,” Reviews of Modern Physics, vol. 83, no. 2, pp. 647–704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. S. Kim and K. N. Han, “Future direction of direct writing,” Journal of Applied Physics, vol. 108, no. 10, Article ID 102801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. “ANSYS CFX-Solver Theory Guide,” 2011.
  30. I. S. Akhatov, J. M. Hoey, D. Thompson et al., “Aerosol flow through a micro-capillary,” in Proceedings of the ASME 2nd Micro/Nanoscale Heat and Mass Transfer International Conference (MNHMT '09), pp. 223–232, December 2009. View at Scopus
  31. C. T. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, 1998.
  32. I. Kim, S. Elghobashi, and W. A. Sirignano, “On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers,” The Journal of Fluid Mechanics, vol. 367, pp. 221–253, 1998. View at Scopus
  33. J. S. Marshall, “Discrete-element modeling of particulate aerosol flows,” Journal of Computational Physics, vol. 228, no. 5, pp. 1541–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Odar and W. S. Hamilton, “Forces on a sphere accelerating in a viscous fluid,” The Journal of Fluid Mechanics, vol. 18, pp. 302–314, 1964.
  35. J. Ran, L. Zhang, Q. Tang, and M. Xin, “Numerical simulation of the particle motion characteristics in boundary layer of gas-solid rotary flow,” Journal of Fluids Engineering, Transactions of the ASME, vol. 128, no. 3, pp. 596–601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. P. G. Saffman, “Lift on a small sphere in a slow shear flow,” The Journal of Fluid Mechanics, vol. 22, pp. 385–400, 1965.
  37. R. I. Nigmatulin, Dynamics of Multiphase Media, vol. 1-2, Hemisphere, New York, NY, USA, 1991.
  38. P. A. Baron, P. Kulkarni, and K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications, Wiley, 2011.
  39. G. G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,” Transactions of the Cambridge Philosophical Society, vol. 9, pp. 8–108, 1851.
  40. J. Fernandez de la Mora and P. Riesco-Chueca, “Aerodynamic focusing of particles in a carrier gas,” The Journal of Fluid Mechanics, vol. 195, pp. 1–21, 1988. View at Scopus
  41. Z. Li and H. Wang, “Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime,” Physical Review E, vol. 68, no. 6, Article ID 061206, 9 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. R. A. Millikan, “Coefficients of slip in gases and the law of reflection of molecules from the surfaces of solids and liquids,” Physical Review, vol. 21, no. 3, pp. 217–238, 1923. View at Publisher · View at Google Scholar · View at Scopus
  43. R. W. Johnson, The Handbook of Fluid Dynamics, CRC Press, Washington, DC, USA, 1998.
  44. E. Cunningham, “On the velocity of steady fall of spherical particles through fluid medium,” Proceedings of the Royal Society of London Series A, vol. 83, pp. 357–365, 1910.
  45. D. J. Carlson and R. F. Hoglund, “Particle drag and heat transfer in rocket nozzles,” AIAA, vol. 2, pp. 1980–1984, 1964.
  46. M. Knudsen and S. Weber, “Luftwiderstand gegen die langsame bewegung kleiner kugeln,” Annals of Physics, vol. 36, pp. 981–994, 1911.
  47. R. V. Mallina, A. S. Wexler, and M. V. Johnston, “High-speed particle beam generation: simple focusing mechanisms,” Journal of Aerosol Science, vol. 30, no. 6, pp. 719–738, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. M. D. Allen and O. G. Raabe, “Re-evaluation of millikan's oil drop data for the motion of small particles in air,” Journal of Aerosol Science, vol. 13, no. 6, pp. 537–547, 1982. View at Scopus
  49. I. Langmuir, Filtration of Aerosols and Development of Filter Materials, Office of Scientific Research and Development, 1942.
  50. C. N. Davies, “Definitive equations for the fluid resistance of spheres,” Proceedings of the Physical Society, vol. 57, no. 4, article 301, pp. 259–270, 1945. View at Publisher · View at Google Scholar · View at Scopus
  51. W. DeMarcus and J. W. Thomas, Theory of a Diffusion Battery, Oak Ridge National Laboratory, 1952.
  52. A. Reif, “Aerosols: physical properties, instrumentation and techniques,” in Aviation Medicine Selected Reviews, C. S. White, W. R. Lovelace II, and F. G. Hirsch, Eds., Pergamon Press, Oxford, UK, 1958.
  53. N. A. Fuchs, The Mechanics of Aerosols, Pergamon Press, Oxford, UK, 1964.
  54. B. Dahneke, J. Hoover, and Y. S. Cheng, “Similarity theory for aerosol beams,” Journal of Colloid And Interface Science, vol. 87, no. 1, pp. 167–179, 1982. View at Scopus
  55. R. L. Buckley and S. K. Loyalka, “Cunningham correction factor and accommodation coefficient: interpretation of Millikan's data,” Journal of Aerosol Science, vol. 20, no. 3, pp. 347–349, 1989. View at Scopus
  56. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles, Dover, Mineola, NY, USA, 2005.
  57. L. Schiller and A. Nauman, “A drag coefficient correction,” V.D.I. Zeitung, vol. 77, pp. 318–320, 1935.
  58. B. Wang, Y. Xiong, and A. N. Osiptsov, “Two-way coupling model for shock-induced laminar boundary-layer flows of a dusty gas,” Acta Mechanica Sinica/Lixue Xuebao, vol. 21, no. 6, pp. 557–563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Mei, “An approximate expression for the shear lift force on a spherical particle at finite reynolds number,” International Journal of Multiphase Flow, vol. 18, no. 1, pp. 145–147, 1992. View at Scopus
  60. Q. Wang, K. D. Squires, and O. Simonin, “Large eddy simulation of turbulent gas-solid flows in a vertical channel and evaluation of second-order models,” International Journal of Heat and Fluid Flow, vol. 19, no. 5, pp. 505–511, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Kuan and M. P. Schwarz, “Numerical prediction of dilute particulate flow in horizontal and vertical ducts,” in Proceedings of the 3rd International Conference on CFD in the Minerals and Process Industries, pp. 10–12, Melbourne, Australia, 2003.
  62. B. Y. Wang and A. N. Osiptsov, “Near-wall boundary layer behind a shock wave in a dusty gas,” Fluid Dynamics, vol. 34, no. 4, pp. 505–515, 1999. View at Scopus
  63. J. L. M. Poiseuille, “Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires,” Annales Des Sciences Naturelles, vol. 5, p. 111, 1836.
  64. G. Segre and A. Silberberg, “Behavior of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation,” The Journal of Fluid Mechanics, vol. 14, pp. 136–157, 1962.
  65. J. P. Matas, J. F. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil and Gas Science and Technology, vol. 59, no. 1, pp. 59–70, 2004. View at Scopus
  66. D. R. Oliver, “Influence of particle rotation on radial migration in the poiseuille flow of suspensions,” Nature, vol. 194, no. 4835, pp. 1269–1271, 1962. View at Publisher · View at Google Scholar · View at Scopus
  67. D. S. Dandy and H. A. Dwyer, “Sphere in shear flow at finite Reynolds number. Effect of shear on particle lift, drag, and heat transfer,” The Journal of Fluid Mechanics, vol. 216, pp. 381–410, 1990. View at Scopus
  68. I. S. Akhatov, J. M. Hoey, O. F. Swenson, and D. L. Schulz, “Aerosol focusing in micro-capillaries: theory and experiment,” Journal of Aerosol Science, vol. 39, no. 8, pp. 691–709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. B. McLaughlin, “Inertial migration of a small sphere in linear shear flows,” The Journal of Fluid Mechanics, vol. 224, pp. 261–274, 1991. View at Scopus
  70. G. N. Lipatov, T. I. Semenyuk, and S. A. Grinshpun, “Aerosol migration in laminar and transition flows,” Journal of Aerosol Science, vol. 21, no. 1, pp. S93–S96, 1990. View at Scopus
  71. Y. S. Cheng and B. E. Dahneke, “Properties of continuum source particle beams: II. Beams generated in capillary expansions,” Journal of Aerosol Science, vol. 10, no. 4, pp. 363–368, 1979. View at Scopus
  72. S. Fuerstenau, A. Gomez, and J. Fernández de la Mora, “Visualization of aerodynamically focused subsonic aerosol jets,” Journal of Aerosol Science, vol. 25, no. 1, pp. 165–173, 1994. View at Scopus
  73. G. W. Israel and S. K. Friedlander, “High-speed beams of small particles,” Journal of Colloid And Interface Science, vol. 24, no. 3, pp. 330–337, 1967. View at Scopus
  74. G. W. Israël and J. S. Whang, Dynamical Properties of Aerosol Beams: Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.
  75. J. J. Stoffels, “A direct inlet for surface-ionization mass spectrometry of airborne particles,” International Journal of Mass Spectrometry and Ion Physics, vol. 40, no. 2, pp. 223–234, 1981. View at Scopus
  76. M. P. Sinha, C. E. Giffin, D. D. Norris, T. J. Estes, V. L. Vilker, and S. K. Friedlander, “Particle analysis by mass spectrometry,” Journal of Colloid And Interface Science, vol. 87, no. 1, pp. 140–153, 1982. View at Scopus
  77. T. J. Estes, V. L. Vilker, and S. K. Friedlander, “Characteristics of a capillary-generated particle beam,” Journal of Colloid And Interface Science, vol. 93, no. 1, pp. 84–94, 1983. View at Scopus
  78. O. Kievit, J. C. M. Marijnissen, P. J. T. Verheijen, and B. Scarlett, “Some improvements on the particle beam generator,” Journal of Aerosol Science, vol. 21, no. 1, pp. S685–S688, 1990. View at Scopus
  79. W. D. Reents Jr., S. W. Downey, A. B. Emerson et al., “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Science and Technology, vol. 23, no. 3, pp. 263–270, 1995. View at Scopus
  80. N. P. Rao, J. Navascues, and J. Fernández de la Mora, “Aerodynamic focusing of particles in viscous jets,” Journal of Aerosol Science, vol. 24, no. 7, pp. 879–892, 1993. View at Scopus
  81. P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, “Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions,” Aerosol Science and Technology, vol. 22, no. 3, pp. 293–313, 1995. View at Scopus
  82. P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, “Generating particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions,” Aerosol Science and Technology, vol. 22, no. 3, pp. 314–324, 1995. View at Scopus
  83. F. Di Fonzo, A. Gidwani, M. H. Fan et al., “Focused nanoparticle-beam deposition of patterned microstructures,” Applied Physics Letters, vol. 77, no. 6, pp. 910–912, 2000. View at Scopus
  84. X. Wang and P. H. McMurry, “A design tool for aerodynamic lens systems,” Aerosol Science and Technology, vol. 40, no. 5, pp. 320–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. X. Wang, A. Gidwani, S. L. Girshick, and P. H. McMurry, “Aerodynamic focusing of nanoparticles: II. Numerical simulation of particle motion through aerodynamic lenses,” Aerosol Science and Technology, vol. 39, no. 7, pp. 624–636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. Mahmud, J. M. Hoey, A. Lutfurakhmanov et al., “Experimental characterization of aerosol flow through a micro-capillary,” in ASME Conference Proceedings, pp. 949–958, Montreal, Canada, 2010.
  87. B. King and M. Renn, “Aerosol Jet direct write printing for mil-aero electronic applications,” http://www.optomec.com/, 2009.
  88. M. J. Renn, B. H. King, and M. Essien, “Maskless deposition technology targets passive embedded components,” in Surface Mount Technology Association Pan Pacific Symposium, 2002.
  89. G. N. Lipatov, S. A. Grinshpun, and T. I. Semenyuk, “Properties of crosswise migration of particles in ducts and inner aerosol deposition,” Journal of Aerosol Science, vol. 20, no. 8, pp. 935–938, 1989. View at Scopus
  90. C. C. Hwang, “Initial stages of the interaction of a shock wave with a dust deposit,” International Journal of Multiphase Flow, vol. 12, no. 4, pp. 655–666, 1986. View at Scopus
  91. M. S. H. El-Batsh, “Modeling particle deposition on gas turbine blade surfaces”.
  92. I. E. Barton, “Computation of particle tracks over a backward-facing step,” Journal of Aerosol Science, vol. 26, no. 6, pp. 887–901, 1995. View at Scopus
  93. V. R. Marinov, Y. A. Atanasov, A. Khan et al., “Direct-write vapor sensors on FR4 plastic substrates,” IEEE Sensors Journal, vol. 7, no. 6, pp. 937–944, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Maiwald, C. Werner, V. Zoellmer, and M. Busse, “INKtelligent printed strain gauges,” Sensors and Actuators, A, vol. 162, no. 2, pp. 198–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. M. Hoey, M. T. Reich, A. Halvorsen et al., “Rapid prototyping RFID antennas using direct-write,” IEEE Transactions on Advanced Packaging, vol. 32, no. 4, pp. 809–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Ha, Y. Xia, A. A. Green et al., “Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks,” ACS Nano, vol. 4, no. 8, pp. 4388–4395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. C. S. Jones, X. Lu, M. Renn, M. Stroder, and W. S. Shih, “Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution,” Microelectronic Engineering, vol. 87, no. 3, pp. 434–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Robinson, J. M. Hoey, D. Thompson et al., “Cyclohexasilane (Si6H12) as a precursor to silicon based ring oscillators built with collimated aerosol beam-direct write (CAB-DWTM),” in MRS Spring Meeting, San Francisco, Calif, USA, 2009.
  99. A. Mette, P. L. Richter, M. Hörteis, and S. W. Glunz, “Metal aerosol jet printing for solar cell metallization,” Progress in Photovoltaics, vol. 15, no. 7, pp. 621–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Hörteis and S. W. Glunz, “Fine line printed silicon solar cells exceeding 20% efficiency,” Progress in Photovoltaics, vol. 16, no. 7, pp. 555–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. C. E. Folgar, C. Suchicital, and S. Priya, “Solution-based aerosol deposition process for synthesis of multilayer structures,” Materials Letters, vol. 65, no. 9, pp. 1302–1307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. J. H. Cho, J. Lee, Y. Xia et al., “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nature Materials, vol. 7, no. 11, pp. 900–906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Herlogsson, M. Cölle, S. Tierney, X. Crispin, and M. Berggren, “Low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors,” Advanced Materials, vol. 22, no. 1, pp. 72–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Xia, W. Zhang, M. Ha et al., “Printed sub-2 V Gel-electrolyte-gated polymer transistors and circuits,” Advanced Functional Materials, vol. 20, no. 4, pp. 587–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Vaillancourt, H. Zhang, P. Vasinajindakaw et al., “All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz,” Applied Physics Letters, vol. 93, no. 24, Article ID 243301, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. J. Renn, B. H. King, M. Essien, and L. J. Hunter, “Apparatuses and method for maskless mesoscale material deposition,” US Patent 7045015, 2006.
  107. S. Han, X. Dai, P. Loy et al., “Printed silicon as diode and FET materials—Preliminary results,” Journal of Non-Crystalline Solids, vol. 354, no. 19–25, pp. 2623–2626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. M. F. A. M. van Hest, “Direct write approaches for metallization,” in Proceedings of the 2nd Workshop on Metallization of Crystalline Silicon Solar Cells, Cibstabcem, Germany, 2010.
  109. J. M. Hoey, J. Fink, M. Page, Q. Wang, I. S. Akhatov, and D. L. Schulz, “Collimated aerosol beam-direct write for solar cell metallization layer,” in MRS Spring Meeting, p. C9.3, San Francisco, Calif, USA, 2010.
  110. J. Fink, J. M. Hoey, and D. L. Schulz, Fine Line Metallization of Silicon Solar Cells via Collimated Aerosol Beam Direct Write, ASME International Mechanical Engineering Congress and Exposition, Houston, Tex, USA, 2012.
  111. M. F. A. M. Van Hest, S. E. Habas, J. M. Underwood et al., “Direct write metallization for photovoltaic cells and scaling thereof,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC '10), pp. 3626–3628, Honolulu, Hawaii, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. S. E. Habas, H. A. S. Platt, M. F. A. M. Van Hest, and D. S. Ginley, “Low-cost inorganic solar cells: from ink to printed device,” Chemical Reviews, vol. 110, no. 11, pp. 6571–6594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Drew, S. Hopman, M. Hörteis, S. W. Glunz, and F. Granek, “Combining laser chemical processing and aerosol jet printing: a laboratory scale feasibility study,” Progress in Photovoltaics, vol. 19, no. 3, pp. 253–259, 2011. View at Publisher · View at Google Scholar · View at Scopus