Table 3: Summary of literature for drag coefficients at different Reynolds numbers, reprinted from Clift et al. [56], Copyright 2005, with permission from Dover Publications, Inc.

Author(s)Reynolds number range 𝐶 𝐷

Schiller and Nauman R e 𝑝 < 8 0 0 ( 2 4 / R e 𝑝 ) ( 1 + 0 . 1 5 R e 𝑝 0 . 6 8 7 )
Lapple R e 𝑝 < 1 0 0 0 ( 2 4 / R e 𝑝 ) ( 1 + 0 . 1 2 5 R e 𝑝 0 . 7 2 )
Langmuir and Blodgett 1 < R e 𝑝 < 1 0 0 ( 2 4 / R e 𝑝 ) ( 1 + 0 . 1 9 7 R e 𝑝 0 . 6 3 + 2 . 6 × 1 0 4 R e 𝑝 1 . 3 8 )
Allen 2 < R e 𝑝 < 5 0 0 1 0 R e 𝑝 1 / 2
Allen 1 < R e 𝑝 < 1 0 0 0 3 0 R e 𝑝 0 . 6 2 5
Gilbert et al. 0 . 2 < R e 𝑝 < 2 0 0 0 0 . 4 8 + 2 8 R e 𝑝 0 . 8 5
Kurten et al. 0 . 1 < R e 𝑝 < 4 0 0 0 0 . 2 8 + 6 / R e 𝑝 0 . 5 + 2 1 / R e 𝑝
Abraham R e 𝑝 < 6 0 0 0 0 . 2 9 2 4 ( 1 + 9 . 0 6 R e 𝑝 0 . 5 ) 2
Ihme et al. R e 𝑝 < 1 0 4 0 . 3 6 + 5 . 4 8 / R e 𝑝 0 . 5 7 3 + 2 4 / R e 𝑝
Rumpf R e 𝑝 < 1 0 2 + 2 4 / R e 𝑝
Rumpf R e 𝑝 < 1 0 0 1 + 2 4 / R e 𝑝
Rumpf R e 𝑝 < 1 0 5 0 . 5 + 2 4 / R e 𝑝
Clift and Gauvin R e 𝑝 < 3 × 1 0 5 ( 2 4 / R e 𝑝 ) ( 1 + 0 . 1 5 R e 𝑝 0 . 6 8 7 ) + ( 0 . 4 2 / ( 1 + 4 . 2 5 × 1 0 4 R e 𝑝 1 . 1 6 ) )
Brauer R e 𝑝 < 3 × 1 0 5 0 . 4 + 4 / R e 𝑝 0 . 5 + 2 4 / R e 𝑝
Tanaka and Iinoya R e 𝑝 < 7 × 1 0 5 l o g 1 0 𝐺 = 𝑎 1 𝑤 2 + 𝑎 2 𝑤 + 𝑎 3 , 𝑤 = l o g 1 0 R e 𝑝