About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 389505, 8 pages
http://dx.doi.org/10.1155/2012/389505
Research Article

Highly Stable and Active Pt/Nb-TiO2 Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells

1General Motors Global Research and Development Center, Warren, MI 48090-9055, USA
2Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, Canada N6A 5B9
3Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, QC, Canada J3X 1S2

Received 13 March 2012; Accepted 30 May 2012

Academic Editor: Tanaji P. Gujar

Copyright © 2012 Shuhui Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Marezio and P. D. Dernier, “The crystal structure of Ti4O7, a member of the homologous series TinO2n−1,” Journal of Solid State Chemistry, vol. 3, no. 3, pp. 340–348, 1971.
  2. R. Borup, J. Meyers, B. Pivovar et al., “Scientific aspects of polymer electrolyte fuel cell durability and degradation,” Chemical Reviews, vol. 107, no. 10, pp. 3904–3951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Stevens and J. R. Dahn, “Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells,” Carbon, vol. 43, no. 1, pp. 179–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Shao, G. Yin, and Y. Gao, “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell,” Journal of Power Sources, vol. 171, no. 2, pp. 558–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Saha, R. Li, and X. Sun, “High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells,” Journal of Power Sources, vol. 177, no. 2, pp. 314–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Ioroi, H. Senoh, S. I. Yamazaki, Z. Siroma, N. Fujiwara, and K. Yasuda, “Stability of corrosion-resistant Magńli-phase Ti4O7-supported PEMFC catalysts at high potentials,” Journal of the Electrochemical Society, vol. 155, no. 4, pp. B321–B326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Ioroi, Z. Siroma, N. Fujiwara, S. I. Yamazaki, and K. Yasuda, “Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells,” Electrochemistry Communications, vol. 7, no. 2, pp. 183–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Chhina, S. Campbell, and O. Kesler, “An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells,” Journal of Power Sources, vol. 161, no. 2, pp. 893–900, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Chen, S. R. Bare, and T. E. Mallouk, “Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells,” Journal of the Electrochemical Society, vol. 149, no. 8, pp. A1092–A1099, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Chhina, S. Campbell, and O. Kesler, “Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs,” Journal of the Electrochemical Society, vol. 154, no. 6, pp. B533–B539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. Saha, M. N. Banis, Y. Zhang et al., “Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells,” Journal of Power Sources, vol. 192, no. 2, pp. 330–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Saha, R. Li, M. Cai, and X. Sun, “High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes,” Electrochemical and Solid-State Letters, vol. 10, no. 8, pp. B130–B133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Koninck, P. Manseau, and B. Marsan, “Preparation and characterization of Nb-doped TiO2 nanoparticles used as a conductive support for bifunctional CuCo2O4 electrocatalyst,” Journal of Electroanalytical Chemistry, vol. 611, no. 1-2, pp. 67–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. W. Park and K. S. Seol, “Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells,” Electrochemistry Communications, vol. 9, no. 9, pp. 2256–2260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Cai, Y. Lu, Z. Wu, et al., “Making electrocatalyst supports for fuel cells,” US patent, Application number: 12/716360, 2010.
  16. H. Chhina, D. Susac, S. Campbell, and O. Kesler, “Transmission electron microscope observation of Pt deposited on Nb-doped titania,” Electrochemical and Solid-State Letters, vol. 12, no. 6, pp. B97–B100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Tauster, S. C. Fung, and R. L. Garten, “Strong metal-support interactions. Group 8 noble metals supported on TiO2,” Journal of the American Chemical Society, vol. 100, no. 1, pp. 170–175, 1978. View at Scopus
  18. F. Leroux, P. J. Dewar, M. Intissar, G. Ouvrard, and L. F. Nazar, “Study of the formation of mesoporous titania via a template approach and of subsequent Li insertion,” Journal of Materials Chemistry, vol. 12, no. 11, pp. 3245–3253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Traversa, M. L. Di Vona, S. Licoccia et al., “Sol-gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring,” Journal of Sol-Gel Science and Technology, vol. 22, no. 1-2, pp. 167–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Sun, D. Q. Yang, D. Villers, G. X. Zhang, E. Sacher, and J. P. Dodelet, “Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires,” Advanced Materials, vol. 20, no. 3, pp. 571–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Q. Yang, S. Sun, J. P. Dodelet, and E. Sacher, “A facile route for the self-organized high-density decoration of Pt nanoparticles on carbon nanotubes,” Journal of Physical Chemistry C, vol. 112, no. 31, pp. 11717–11721, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Q. Yang, S. H. Sun, H. Meng, J. P. Dodelet, and E. Sacher, “Formation of a porous platinum nanoparticle froth for electrochemical applications, produced without templates, surfactants, or stabilizers,” Chemistry of Materials, vol. 20, no. 14, pp. 4677–4681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. http://www.phy.cuhk.edu.hk/~surface/XPSPEAK/.
  24. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, Eden Prairie, Minn, USA, 1992, Edited by J. Chastain.
  25. R. Woods, Electroanalytical Chemistry, Marcel Dekker, New York, NY, USA, 1976, Edited by A. J. Bard. View at Scopus
  26. J. Zhang, K. Sasaki, E. Sutter, and R. R. Adzic, “Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters,” Science, vol. 315, no. 5809, pp. 220–222, 2007. View at Publisher · View at Google Scholar · View at Scopus