About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 401574, 9 pages
http://dx.doi.org/10.1155/2012/401574
Research Article

TiC Nanoparticle Addition to Enhance the Mechanical Response of Hybrid Magnesium Alloy

1Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
2CTO Office, Singapore Technologies Kinetics Ltd (ST Kinetics), 249 Jalan Boon Lay, Singapore 619523

Received 8 August 2011; Revised 29 September 2011; Accepted 3 October 2011

Academic Editor: Jaime Grunlan

Copyright © 2012 Muralidharan Paramsothy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A hybrid magnesium alloy nanocomposite containing TiC nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable TiC nanoparticle distribution, nondominant (0 0 0 2) texture in the longitudinal direction, and 16% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy, the nanocomposite simultaneously exhibited higher tensile yield strength (0.2% TYS), ultimate tensile strength (UTS), failure strain, and work of fracture (WOF) (+14%, +7%, +81%, and +92%, resp.). Compared to the monolithic hybrid alloy, the nanocomposite exhibited lower compressive yield strength (0.2% CYS) and higher ultimate compressive strength (UCS), failure strain, and WOF (–11%, +7%, +4%, and +15%, resp.). The advantageous effects of TiC nanoparticle addition on the enhancement of tensile and compressive properties of the hybrid magnesium alloy are investigated in this paper.