About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 435205, 6 pages
http://dx.doi.org/10.1155/2012/435205
Research Article

Preparation of SiO2-Capped Sr2MgSi2O7:Eu,Dy Nanoparticles with Laser Ablation in Liquid

1Departiment of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
2Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Received 7 March 2012; Accepted 29 May 2012

Academic Editor: Wei Qian

Copyright © 2012 Mika Ishizaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Brech and L. Cross, “Optical micromission stimulated by a ruby maser,” Applied Spectroscopy, vol. 16, no. 2, p. 59, 1962.
  2. J. Neddersen, G. Chumanov, and T. Cotton, “Laser ablation of metals: a new method for preparing SERS active colloids,” Applied Spectroscopy, vol. 47, no. 12, pp. 1959–1964.
  3. A. Fojtik and A. Henglein, “Laser ablation of films and suspended particles in a solvent: formation of cluster and colloid solutions,” Berichte der Bunsen-Gesellschaft. Physical Chemistry, Chemical Physics, vol. 97, no. 2, pp. 252–254, 1993.
  4. F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” The Journal of Physical Chemistry B, vol. 104, no. 35, pp. 8336–8337, 2000. View at Scopus
  5. Y. Tamaki, T. Asahi, and H. Masuhara, “Nanoparticle formation of vanadyl phthalocyanine by laser ablation of its crystalline powder in a poor solvent,” The Journal of Physical Chemistry A, vol. 106, no. 10, pp. 2135–2139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Tsuji, K. Iryo, N. Watanabe, and M. Tsuji, “Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size,” Applied Surface Science, vol. 202, no. 1-2, pp. 80–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Usui, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions,” The Journal of Physical Chemistry B, vol. 109, no. 1, pp. 120–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Applied Physics A, vol. 87, no. 1, pp. 47–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-probe spectroscopy investigations revealing coulomb explosion,” The Journal of Physical Chemistry C, vol. 115, no. 17, pp. 8503–8512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Asahi, T. Sugiyama, and H. Masuhara, “Laser fabrication and spectroscopy of organic nanoparticles,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1790–1798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Sajti, R. Sattari, B. N. Chichkov, and S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” The Journal of Physical Chemistry C, vol. 114, no. 6, pp. 2421–2427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. S. Park, K. M. Kim, S. W. Mhin et al., “Simple route for Y3Al5O12: Ce3+ colloidal nanocrystal via laser ablation in deionized water and its luminescence,” Electrochemical and Solid-State Letters, vol. 11, no. 4, pp. J23–J26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angewandte Chemie—International Edition, vol. 49, no. 41, pp. 7456–7460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Yoshimura, K. Nakamura, F. Wakai et al., “Preparation of long-afterglow colloidal solution of Sr2MgSi2O7: Eu2+, Dy3+ by laser ablation in liquid,” Applied Surface Science, vol. 257, no. 6, pp. 2170–2175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. I. Pankove, Optical Processes in Semiconductors, Dover, New York, NY, USA, 1971.
  16. O. I. Mićić, J. Sprague, Z. Lu, and A. J. Nozik, “Highly efficient band-edge emission from InP quantum dots,” Applied Physics Letters, vol. 68, no. 22, pp. 3150–3152, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, “The band edge luminescence of surface modified CdSe nanocrystallites: probing the luminescing state,” Journal of Chemical Physics, vol. 106, no. 23, pp. 9869–9882, 1997. View at Scopus
  18. H. Takahashi and T. Isobe, “Photoluminescence enhancement of ZnS:Mn2+ nanocrystal phosphors: comparison of organic and inorganic surface modifications,” Japanese Journal of Applied Physics, Part 1, vol. 44, no. 2, pp. 922–925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Wada, F. Yoshimura, M. Ishizaki, F. Wakai, M. Hara, and O. Odawara, “Optical properties of afterglow nanoparticles Sr2MgSi2O7: Eu2+, Dy3+ capped with polyethylene glycol,” Advances in Optical Technologies, vol. 2012, Article ID 814745, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. C. Pierre, Introduction to Sol-Gel Processing, chapter 2, Springer, 1998.
  21. P. K. Jal, M. Sudarshan, A. Saha, S. Patel, and B. K. Mishra, “Synthesis and characterization of nanosilica prepared by precipitation method,” Colloids and Surfaces A, vol. 240, no. 1-3, pp. 173–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Wang, X. A. Fu, J. A. Tang, and L. Jiang, “Preparation of submicron spherical particles of silica by the water-in-oil microemulsion method,” Colloids and Surfaces A, vol. 81, no. C, pp. 177–180, 1993. View at Scopus
  23. R. Kumar, H. Ding, R. Hu et al., “In vitro and in vivo optical imaging using water-dispersible, noncytotoxic, luminescent, silica-coated quantum rods,” Chemistry of Materials, vol. 22, no. 7, pp. 2261–2267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. D. Jang, “Experimental study of synthesis of silica nanoparticles by a bench-scale diffusion flame reactor,” Powder Technology, vol. 119, no. 2-3, pp. 102–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Y. Hong, B. Feng, Z. Q. Ren et al., “Thermodynamic, hydrodynamic, particle dynamic, and experimental analyses of silica nanoparticles synthesis in diffusion flame,” Canadian Journal of Chemical Engineering, vol. 87, no. 1, pp. 143–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Cai, R. Y. Hong, L. S. Wang et al., “Synthesis of silica powders by pressured carbonation,” Chemical Engineering Journal, vol. 151, no. 1-3, pp. 380–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. Heley, D. Jackson, and P. F. James, “Fine low density silica powders prepared by supercritical drying of gels derived from silicon tetrachloride,” Journal of Non-Crystalline Solids, vol. 186, pp. 30–36, 1995.
  28. C. J. Brinker, “Hydrolysis and condensation of silicates: effects on structure,” Journal of Non-Crystalline Solids, vol. 100, no. 1-3, pp. 31–50, 1988. View at Scopus
  29. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” Journal of Colloid And Interface Science, vol. 26, no. 1, pp. 62–69, 1968. View at Scopus
  30. M. Kimata, “The structural properties of synthetic Sr-akermanite, Sr2MgSi2O7,” Zeitschrift für Kristallographie, vol. 163, no. 3-4, pp. 295–304, 1983. View at Scopus
  31. T. Kano, “Luminescence center of rare-earth ions,” in Phosphor Handbook, W. M. Yen, S. Shionoya, and H. Yamamoto, Eds., chapter 3.3, CRC Press, Boca Raton, Fla, USA, 2006.
  32. Y. Hasegawa, T. Ohkubo, K. Sogabe et al., “Luminescence of novel neodymium sulfonylaminate complexes in organic media,” Angewandte Chemie—International Edition, vol. 39, no. 2, pp. 357–360, 2000.