About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 461468, 18 pages
http://dx.doi.org/10.1155/2012/461468
Review Article

Nanoenhanced Materials for Reclamation of Mine Lands and Other Degraded Soils: A Review

Carbon Management & Sequestration Center, School of Environment and Natural Resources, Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA

Received 7 March 2012; Revised 14 May 2012; Accepted 14 May 2012

Academic Editor: William W. Yu

Copyright © 2012 Ruiqiang Liu and Rattan Lal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Younger, “Environmental impacts of coal mining and associated wastes: a geochemical perspective,” Geological Society Special Publication, no. 236, pp. 169–209, 2004. View at Scopus
  2. F. G. Bell and L. J. Donnelly, Mining and Its Impact on the Environment, Taylor & Francis, New York, NY, USA, 2006.
  3. S. F. Greb, C. F. Eble, D. C. Peters, and A. R. Papp, Coal and the Environment, American Geological Institute, Alexandria, Va, USA, 2006.
  4. W. L. Daniels, B. Stewart, and C. E. Zipper, Reclamation of Coal Refuse Disposal Areas VCE publication 460-131, www.http://ww.pubs.ext.vt.edu/460-131.html, 2010.
  5. D. A. N. Ussiri and R. Lal, “Carbon sequestration in reclaimed minesoils,” Critical Reviews in Plant Sciences, vol. 24, no. 3, pp. 151–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Sperow, “Carbon sequestration potential in reclaimed mine sites in seven east-central states,” Journal of Environmental Quality, vol. 35, no. 4, pp. 1428–1438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Pietrzykowski and W. Krzaklewski, “Potential for carbon sequestration in reclaimed mine soil on reforested surface mining areas in Poland,” Natural Science, vol. 2, pp. 1015–1021, 2010.
  8. R. K. Shrestha, R. Lal, and P. A. Jacinthe, “Enhancing carbon and nitrogen sequestration in reclaimed soils through organic amendments and chiseling,” Soil Science Society of America Journal, vol. 73, no. 3, pp. 1004–1011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. C. Haering, W. L. Daniels, and S. E. Feagley, “Reclaiming mined lands with biosolids, manures and papermill sludges,” in Reclamation of Drastically Disturbed Lands, R. I. Barnhisel, R. G. Darmody, and W. L. Daniels, Eds., pp. 615–644, American Society of Agronomy, Soil Science Society of America, Soil Science Society of America, Madison, Wis, USA, 2000.
  10. F. J. Larney, O. O. Akinremi, R. L. Lemke, V. E. Klaassen, and H. H. Janzen, “Soil responses to topsoil replacement depth and organic amendments in wellsite reclamation,” Canadian Journal of Soil Science, vol. 85, no. 2, pp. 307–317, 2005. View at Scopus
  11. L. S. Forsberg and S. Ledin, “Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings,” Science of the Total Environment, vol. 358, no. 1–3, pp. 21–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. S. Bendfeldt, J. A. Burger, and W. Lee Daniels, “Quality of amended mine soils after sixteen years,” Soil Science Society of America Journal, vol. 65, no. 6, pp. 1736–1744, 2001. View at Scopus
  13. D. W. Ming and E. R. Allen, “Use of natural zeolites in agronomy, horticulture and environmental soil remediation,” in Natural Zeolites: Occurrence, Properties, Applications, D. W. Ming and D. B. Bish, Eds., pp. 619–654, Mineralogical Society of America, Geochemical Society,Saint Louis, Mo, USA; Italian National Academy, Accademia Nationale dei Lincei (ANL), Barcelona, Italy, 2001.
  14. W. A. Dick, R. C. Stehouwer, J. M. Bigham, et al., “Beneficial uses of flue gas desulfurization by-products: examples and case studies of land application,” in Land Application of Agricultural, Industrial, and Municipal By-Products, J. F. Power and W. A. Dick, Eds., pp. 505–536, Soil Science Society of America, Madison, Wis, USA, 2000.
  15. D. K. Bhumbla, R. N. Singh, and R. F. Keefer, “Coal combustion by-product utilization for land reclamation,” in Reclamation of Drastically Disturbed Lands, R. I. Barnhisel, R. G. Darmody, and W. L. Daniels, Eds., pp. 489–512, American Society of Agronomy, Soil Science Society of America, Soil Science Society of America, Madison, Wis, USA, 2000.
  16. W. L. Daniels, B. Stewart, K. C. Haering, and C. E. Zipper, “The potential for beneficial reuse of coal fly ash in southwest Virginia mining environments,” Publication 460-134, Virginia Cooperative Extension (VCE), Stanardsville, Va, USA, 2002.
  17. P. A. Jacinthe and R. Lal, “Carbon storage and minesoil properties in relation to topsoil application techniques,” Soil Science Society of America Journal, vol. 71, no. 6, pp. 1788–1795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. B. Clark, K. D. Ritchey, and V. C. Baligar, “Benefits and constraints for use of FGD products on agricultural land,” Fuel, vol. 80, no. 6, pp. 821–828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. G. A. O'Connor, H. A. Elliott, N. T. Basta et al., “Sustainable land application: an overview,” Journal of Environmental Quality, vol. 34, no. 1, pp. 7–17, 2005. View at Scopus
  20. C. A. Kinney, E. T. Furlong, S. D. Zaugg et al., “Survey of organic wastewater contaminants in biosolids destined for land application,” Environmental Science and Technology, vol. 40, no. 23, pp. 7207–7215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Kim, “Preface,” in Advances in Nanotechnology And the Environment, J. Kim, Ed., Pan Stanford Publishing, Singapore, Singapore, 2012.
  22. J. Theron, J. A. Walker, and T. E. Cloete, “Nanotechnology and water treatment: applications and emerging opportunities,” Critical Reviews in Microbiology, vol. 34, no. 1, pp. 43–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Mauter and M. Elimelech, “Environmental applications of carbon-based nanomaterials,” Environmental Science and Technology, vol. 42, no. 16, pp. 5843–5859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Masciangioli and W. X. Zhang, “Environmental technologies at the nanoscale,” Environmental Science and Technology, vol. 37, no. 5, 2003. View at Scopus
  25. R. Lal, “Promise and limitations of soils to minimize climate change,” Journal of Soil and Water Conservation, vol. 63, no. 4, 2008. View at Scopus
  26. R. T. Pabalan and F. P. Bertetti, “Cation-exchange properties of natural zeolites,” in Natural Zeolites: Occurrence, Properties, Applications, D. L. Bish and D. W. Ming, Eds., vol. 45, pp. 453–518, Mineralogical Society of America Reviews in Mineralogy and Geochemistry, Washington, DC, USA, 2001.
  27. F. A. Mumpton, “Using zeolites in agriculture,” in Innovative Biological Technologies for Lesser Developed Countries, Congress of the United States, Office of Technology Assessment, Washington, DC, USA, 1985.
  28. J. L. Boettinger and D. W. Ming, “Zeolites,” in Soil Mineralogy with Environmental Applications, J. B. Dixon and D. G. Schulze, Eds., SSSA Book Series 7, pp. 585–610, Soil Science Society of America, Madison, Wis, USA, 2002.
  29. L. J. M. Githinji, J. H. Dane, and R. H. Walker, “Physical and hydraulic properties of inorganic amendments and modeling their effects on water movement in sand-based root zones,” Irrigation Science, vol. 29, no. 1, pp. 65–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. G. R. Wehtje, J. N. Shaw, R. H. Walker, and W. Williams, “Bermudagrass growth in soil supplemented with inorganic amendments,” HortScience, vol. 38, no. 4, pp. 613–617, 2003. View at Scopus
  31. A. M. Petrovic, “The potential of natural zeolite as a soil amendment,” Golf Course Manage, vol. 58, no. 11, pp. 92–93, 1990.
  32. Z. T. Huang and A. M. Petrovic, “Physical properties of sand as affected by clinoptilolite zeolite particle size and quantity,” Journal of Turfgrass Management, vol. 1, no. 1, pp. 1–15, 1995. View at Scopus
  33. Z. T. Huang and A. M. Petrovic, “Clinoptilolite zeolite effect on evapotranspiration rate and shoot growth rate of creeping bentgrass on sand base greens,” Journal of Turfgrass Management, vol. 1, no. 4, pp. 1–9, 1996.
  34. Z. Lopez, A. S. Bawazir, B. Tanzy, and E. Adkins, “Using St. Cloud clinoptilolite zeolite as a wicking material to sustain riparian vegetation,” in Proceedings of the 2008 Joint Meeting of The Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM. Paper No. 54-6, 2008.
  35. Z. T. Huang and A. M. Petrovic, “Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens,” Journal of Environmental Quality, vol. 23, no. 6, pp. 1190–1194, 1994. View at Scopus
  36. L. E. Katz, D. N. Humphrey, P. T. Jankauskas, and F. A. Demascio, “Engineered soils for low-level radioactive waste disposal facilities: effects of additives on the adsorptive behavior and hydraulic conductivity of natural soils,” Hazardous Waste and Hazardous Materials, vol. 13, no. 2, pp. 283–306, 1996. View at Scopus
  37. H. Khan, A. Z. Khan, R. Khan, N. Matsue, and T. Henmi, “Influence of zeolite application on germination and seed quality of soybean grown on allophanic soil,” Research Journal of Seed Science, vol. 2, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Torii, “Utilization of natural zeolites in Japan,” in Natural Zeolites: Occurrence, Properties, Use, L. B. Sand and F. A. Mumpton, Eds., pp. 441–450, Pergamon Press, Elmsford, NY, USA, 1978.
  39. G. A. Mazur, G. K. Medvid, and T. I. Grigora, “Use of natural zeolites for increasing the fertility of light textured soils,” Eurasian Soil Science, vol. 10, pp. 70–77, 1984.
  40. R. Liu and R. Lal, “A laboratory study on improvement of mine soil quality for re-vegetation through various amendments,” in Proceedings of the ASA-CSSA-SSSA International Annual Meetings, Cincinnati, Ohio, USA, October 2012.
  41. J. A. Burger and C. E. Zipper, “How to restore forests on surface-mined land,” Publication 460-123, Virginia Cooperative Extension (VCE), Stanardsville, Va, USA, 2011.
  42. T. S. Perrin, D. T. Drost, J. L. Boettinger, and J. M. Norton, “Ammonium-loaded clinoptilolite: a slow-release nitrogen fertilizer for sweet corn,” Journal of Plant Nutrition, vol. 21, no. 3, pp. 515–530, 1998. View at Scopus
  43. M. D. Lewis, I. F. D. Moore, and K. L. Goldsberry, “Ammonium-exchanged clinoptilolite and granulated clinoptilolite with urea as nitrogen fertilizers,” in Zeo-Agriculture: Use of Natural Zeolites in Agriculture and Aquaculture, W. G. Pond and F. A. Mumpton, Eds., pp. 105–111, Westview Press, Boulder, Colo, USA, 1984.
  44. K. A. Barbarick and H. J. Pirela, “Agronomic and horticultural uses of zeolites: a review,” in Zeo-Agriculture: Use of Natural Zeolites in Agriculture and Aquaculture, W. G. Pond and F. A. Mumpton, Eds., pp. 93–103, Westview Press, Boulder, Colo, USA, 1984.
  45. K. A. Williams and P. V. Nelson, “Using precharged zeolite as a source of potassium and phosphate in a soilless container medium during potted chrysanthemum production,” Journal of the American Society for Horticultural Science, vol. 122, no. 5, pp. 703–708, 1997. View at Scopus
  46. J. L. Carlino, K. A. Williams, and E. R. Allen, “Evaluation of zeolite-based soilless root media for potted chrysanthemum production,” HortTechnology, vol. 8, no. 3, pp. 373–378, 1998. View at Scopus
  47. T. M. Lai and D. D. Eberl, “Controlled and renewable release of phosphorous in soils from mixtures of phosphate rock and NH4-exchanged clinoptilolite,” Zeolites, vol. 6, no. 2, pp. 129–132, 1986. View at Scopus
  48. D. D. Eberl, K. A. Barbarick, and T. M. Lai, “Influence of NH4-exchanged clinoptilolite on nutrient concentrations in sorghum-sudangrass,” in Natural Zeolites '93: Occurrence, Properties, Use, D. W. Ming and F. A. Mumpton, Eds., pp. 491–504, Int'l Comm Natural Zeolites, Brockport, NY, USA, 1995.
  49. E. R. Allen, L. R. Hossner, D. W. Ming, and D. L. Henninger, “Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures,” Soil Science Society of America Journal, vol. 57, no. 5, pp. 1368–1374, 1993. View at Scopus
  50. Z. L. He, V. C. Baligar, D. C. Martens, K. D. Ritchey, and M. Elrashidi, “Effect of byproduct, nitrogen fertilizer, and zeolite on phosphate rock dissolution and extractable phosphorus in acid soil,” Plant and Soil, vol. 208, no. 2, pp. 199–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. M. C. Derosa, C. Monreal, M. Schnitzer, R. Walsh, and Y. Sultan, “Nanotechnology in fertilizers,” Nature Nanotechnology, vol. 5, no. 2, p. 91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Liu and D. Zhao, “Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles,” Water Research, vol. 41, no. 12, pp. 2491–2502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Liu, “In-situ lead remediation in a shoot-range soil using stabilized apatite nanoparticles,” in Proceedings of the 85th ACS Colloid and Surface Science Symposium, McGill University, Montreal, Canada, June 2011.
  54. R. Edwards, I. Rebedea, N. W. Lepp, and A. J. Lovell, “An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils,” Environmental Geochemistry and Health, vol. 21, no. 2, pp. 157–173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. C. F. Lin, S. S. Lo, H. Y. Lin, and Y. Lee, “Stabilization of cadmium contaminated soils using synthesized zeolite,” Journal of Hazardous Materials, vol. 60, no. 3, pp. 217–226, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Shanableh and A. Kharabsheh, “Stabilization of Cd, Ni and Pb in soil using natural zeolite,” Journal of Hazardous Materials, vol. 45, no. 2-3, pp. 207–217, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Moirou, A. Xenidis, and I. Paspaliaris, “Stabilization Pb, Zn, and Cd-contaminated soil by means of natural zeolite,” Soil and Sediment Contamination, vol. 10, no. 3, pp. 251–267, 2001. View at Scopus
  58. C. Haidouti, “Inactivation of mercury in contaminated soils using natural zeolites,” Science of the Total Environment, vol. 208, no. 1-2, pp. 105–109, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Chlopecka and D. C. Adriano, “Mimicked in-situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc,” Environmental Science and Technology, vol. 30, no. 11, pp. 3294–3303, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. A. S. Knox, D. I. Kaplan, D. C. Adriano, T. G. Hinton, and M. D. Wilson, “Apatite and phillipsite as sequestering agents for metals and radionuclides,” Journal of Environmental Quality, vol. 32, no. 2, pp. 515–525, 2003. View at Scopus
  61. M. R. Mahmoodabadi, “Experimental study on the effects of natural zeolite on lead toxicity, growth, nodulation, and chemical composition of soybean,” Communications in Soil Science and Plant Analysis, vol. 41, no. 16, pp. 1896–1902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. W. Geebelen, J. Vangronsveld, D. C. Adriano, R. Carleer, and H. Clijsters, “Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies,” Water, Air, and Soil Pollution, vol. 140, no. 1–4, pp. 261–277, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Coppola, G. Battaglia, M. Bucci et al., “Remediation of Cd- and Pb-polluted soil by treatment with organo-zeolite conditioner,” Clays and Clay Minerals, vol. 51, no. 6, pp. 609–615, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Stead, Environmental implications of using the natural zeolite clinoptilolite for the remediation of sludge amended soils [Ph.D. thesis], University of Surrey, Surrey, UK, 2002.
  65. J. M. Bigham, R. W. Fitzpatrick, and D. G. Schulze, “Iron oxides,” in Soil Mineralogy with Environmental Applications, J. B. Dixon and D. G. Schulze, Eds., pp. 323–366, Soil Science Society of America, Madison, Wis, USA, 2002.
  66. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, and Q. Zhang, “Heavy metal removal from water/wastewater by nanosized metal oxides: a review,” Journal of Hazardous Materials, vol. 211-212, pp. 317–331, 2012.
  67. A. Xenidis, C. Stouraiti, and N. Papassiopi, “Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron,” Journal of Hazardous Materials, vol. 177, no. 1–3, pp. 929–937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Kumpiene, A. Lagerkvist, and C. Maurice, “Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-a review,” Waste Management, vol. 28, no. 1, pp. 215–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. USEPA, the Use of Soil Amendments for Remediation, Revitalization and Reuse. Solid Waste and Emergency Response (5203P) EPA 542-R-07-013, http://clu-in.org/download/remed/epa-542-r-07-013.pdf, 2007.
  70. H. J. Shipley, K. E. Engates, and A. M. Guettner, “Study of iron oxide nanoparticles in soil for remediation of arsenic,” Journal of Nanoparticle Research, vol. 13, no. 6, pp. 2387–2397, 2011.
  71. D. O’Carroll, B. Sleep, M. Krol, H. Boparai, and C. Kocur, “Nanoscale zero valent iron and bimetallic particles for contaminated site remediation,” Advances in Water Resources. In press. View at Publisher · View at Google Scholar
  72. J. D. Hu, Y. Zevi, X. M. Kou, J. Xiao, X. J. Wang, and Y. Jin, “Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions,” Science of the Total Environment, vol. 408, no. 16, pp. 3477–3489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. T. He, J. Wan, and T. Tokunaga, “Kinetic stability of hematite nanoparticles: the effect of particle sizes,” Journal of Nanoparticle Research, vol. 10, no. 2, pp. 321–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Baalousha, “Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter,” Science of the Total Environment, vol. 407, no. 6, pp. 2093–2101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Hong, R. J. Honda, N. V. Myung, and S. L. Walker, “Transport of iron-based nanoparticles: role of magnetic properties,” Environmental Science and Technology, vol. 43, no. 23, pp. 8834–8839, 2009. View at Publisher · View at Google Scholar
  76. M. Baalousha, A. Manciulea, S. Cumberland, K. Kendall, and J. R. Lead, “Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter,” Environmental Toxicology and Chemistry, vol. 27, no. 9, pp. 1875–1882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. H. L. Karlsson, J. Gustafsson, P. Cronholm, and L. Möller, “Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size,” Toxicology Letters, vol. 188, no. 2, pp. 112–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Auffan, L. Decome, J. Rose et al., “In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study,” Environmental Science and Technology, vol. 40, no. 14, pp. 4367–4373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, and W. J. Stark, “Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress,” Environmental Science and Technology, vol. 41, no. 11, pp. 4158–4163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Sadeghiani, L. S. Barbosa, L. P. Silva, R. B. Azevedo, P. C. Morais, and Z. G. M. Lacava, “Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid,” Journal of Magnetism and Magnetic Materials, vol. 289, pp. 466–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. W. X. Zhang, “Nanoscale iron particles for environmental remediation: an overview,” Journal of Nanoparticle Research, vol. 5, no. 3-4, pp. 323–332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Cao, B. Ahmed, and H. Beyenal, “Immobilization of uranium in groundwater using biofilms,” in Emerging Environmental Technologies, V. Shah, Ed., vol. 2, pp. 1–37, Springer, New York, NY, USA, 2010.
  83. A. Abdelouas, “Uranium mill tailings: geochemistry, mineralogy, and environmental impact,” Elements, vol. 2, no. 6, pp. 335–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Yan, B. Hua, Z. Bao, J. Yang, C. Liu, and B. Deng, “Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems,” Environmental Science and Technology, vol. 44, no. 20, pp. 7783–7789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. J. N. Fiedor, W. D. Bostick, R. J. Jarabek, and J. Farrell, “Understanding the mechanism of uranium removal from groundwater by zero- valent iron using X-ray photoelectron spectroscopy,” Environmental Science and Technology, vol. 32, no. 10, pp. 1466–1473, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. R. A. Crane, M. Dickinson, I. C. Popescu, and T. B. Scott, “Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water,” Water Research, vol. 45, no. 9, pp. 2931–2942, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Dickinson and T. B. Scott, “The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 171–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. O. Riba, T. B. Scott, K. Vala Ragnarsdottir, and G. C. Allen, “Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles,” Geochimica et Cosmochimica Acta, vol. 72, no. 16, pp. 4047–4057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. D. V. Franco, L. M. Da Silva, and W. F. Jardim, “Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions,” Water, Air, and Soil Pollution, vol. 197, no. 1–4, pp. 49–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Xu and D. Zhao, “Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles,” Water Research, vol. 41, no. 10, pp. 2101–2108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. S. M. Ponder, J. G. Darab, and T. E. Mallouk, “Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron,” Environmental Science and Technology, vol. 34, no. 12, pp. 2564–2569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. A. D. Lemly, “Environmental implications of excessive selenium: a review,” Biomedical and Environmental Sciences, vol. 10, no. 4, pp. 415–435, 1997. View at Scopus
  93. C. L. Mackowiak and M. C. Amacher, “Soil sulfur amendments suppress selenium uptake by alfalfa and western wheatgrass,” Journal of Environmental Quality, vol. 37, no. 3, pp. 772–779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. S. T. Witte and L. A. Will, “Investigation of selenium sources associated with chronic selenosis in horses of western Iowa,” Journal of Veterinary Diagnostic Investigation, vol. 5, no. 1, pp. 128–131, 1993. View at Scopus
  95. P. Thomas, J. Irvine, J. Lyster, and R. Beaulieu, “Radionuclides and trace metals in Canadian moose near uranium mines: Comparison of radiation doses and food chain transfer with cattle and caribou,” Health Physics, vol. 88, no. 5, pp. 423–438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. J. T. Olegario, N. Yee, M. Miller, J. Sczepaniak, and B. Manning, “Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions,” Journal of Nanoparticle Research, vol. 12, no. 6, pp. 2057–2068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Alidokht, A. R. Khataee, A. Reyhanitabar, and S. Oustan, “Cr(VI) Immobilization process in a Cr-spiked soil by zerovalent iron nanoparticles: optimization using response surface methodology,” Clean-Soil, Air, Water, vol. 39, no. 7, pp. 633–640, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Q. Li and W. X. Zhang, “Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution x-ray photoelectron spectroscopy (HR-XPS),” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 6939–6946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. X. Q. Li and W. X. Zhang, “Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration,” Langmuir, vol. 22, no. 10, pp. 4638–4642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. S. R. Kanel, J. M. Greneche, and H. Choi, “Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material,” Environmental Science and Technology, vol. 40, no. 6, pp. 2045–2050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. S. R. Kanel, B. Manning, L. Charlet, and H. Choi, “Removal of arsenic(III) from groundwater by nanoscale zero-valent iron,” Environmental Science and Technology, vol. 39, no. 5, pp. 1291–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Watanabe, Y. Murata, T. Nakamura, Y. Sakai, and M. Osaki, “Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils,” Journal of Plant Nutrition, vol. 32, no. 7, pp. 1164–1172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Saleh, H. Kim, T. Phenrat, et al., “Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns,” Environmental Science & Technology, vol. 42, no. 9, pp. 3349–3355, 2008. View at Publisher · View at Google Scholar
  104. P. G. Tratnyek and R. L. Johnson, “Nanotechnologies for environmental cleanup,” Nano Today, vol. 1, no. 2, pp. 44–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. F. He and D. Zhao, “Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water,” Environmental Science and Technology, vol. 39, no. 9, pp. 3314–3320, 2005. View at Publisher · View at Google Scholar
  106. F. He and D. Zhao, “Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers,” Environmental Science and Technology, vol. 41, no. 17, pp. 6216–6221, 2007. View at Publisher · View at Google Scholar
  107. T. Phenrat, N. Saleh, K. Sirk, H. J. Kim, R. D. Tilton, and G. V. Lowry, “Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation,” Journal of Nanoparticle Research, vol. 10, no. 5, pp. 795–814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Sakulchaicharoen, D. M. O'Carroll, and J. E. Herrera, “Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles,” Journal of Contaminant Hydrology, vol. 118, no. 3-4, pp. 117–127, 2010. View at Publisher · View at Google Scholar
  109. B. C. Reinsch, B. Forsberg, R. L. Penn, C. S. Kim, and G. V. Lowry, “Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents,” Environmental Science and Technology, vol. 44, no. 9, pp. 3455–3461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. K. D. Grieger, A. Fjordbøge, N. B. Hartmann, E. Eriksson, P. L. Bjerg, and A. Baun, “Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?” Journal of Contaminant Hydrology, vol. 118, no. 3-4, pp. 165–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. V. Ruby, A. Davis, and A. Nicholson, “In situ formation of lead phosphates in soils as a method to immobilize lead,” Environmental Science Technology, vol. 28, no. 4, pp. 646–654, 1994.
  112. Q. Y. Ma, T. J. Logan, and S. J. Traina, “Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks,” Environmental Science and Technology, vol. 29, no. 4, pp. 1118–1126, 1995. View at Scopus
  113. S. Raicevic, T. Kaludjerovic-Radoicic, and A. I. Zouboulis, “In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification,” Journal of Hazardous Materials, vol. 117, no. 1, pp. 41–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Raicevic, J. V. Wright, V. Veljkovic, and J. L. Conca, “Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium,” Science of the Total Environment, vol. 355, no. 1–3, pp. 13–24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. N. T. Basta and S. L. McGowen, “Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil,” Environmental Pollution, vol. 127, no. 1, pp. 73–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. T. T. Eighmy, B. S. Crannell, L. G. Butler et al., “Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate,” Environmental Science and Technology, vol. 31, no. 11, pp. 3330–3338, 1997. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Stanforth and J. Qiu, “Effect of phosphate treatment on the solubility of lead in contaminated soil,” Environmental Geology, vol. 41, no. 1-2, pp. 1–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Peld, K. Tõnsuaadu, and V. Bender, “Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems,” Environmental Science and Technology, vol. 38, no. 21, pp. 5626–5631, 2004. View at Publisher · View at Google Scholar
  119. A. S. Knox, D. I. Kaplan, and M. H. Paller, “Phosphate sources and their suitability for remediation of contaminated soils,” Science of the Total Environment, vol. 357, no. 1–3, pp. 271–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. USEPA, US Environmental Protection Agency Region 10, 2001. Consensus plan for soil and sediment studies: Coeur d'Alene river soils and sediments bioavailability studies (URS DCN: 4162500.06161.05.a. EPA:16.2), pp. 1–16 http://yosemite.epa.gov/R10/CLEANUP.NSF/fb6a4e3291f5d28388256d140051048b/503bcd6aa1bd60a288256cce00070286/$FILE/soil_amend_consensus_final_022801.PDF, 2012.
  121. C. S. Reynolds and P. S. Davies, “Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective,” Biological Reviews of the Cambridge Philosophical Society, vol. 76, no. 1, pp. 27–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. J. N. Moore, W. H. Ficklin, and C. Johns, “Partitioning of arsenic and metals in reducing sulfidic sediments,” Environmental Science and Technology, vol. 22, no. 4, pp. 432–437, 1988.
  123. G. T. Ankley, D. M. Di Toro, D. J. Hansen, and W. J. Berry, “Technical basis and proposal for deriving sediment quality criteria for metals,” Environmental Toxicology and Chemistry, vol. 15, no. 12, pp. 2056–2066, 1996. View at Scopus
  124. J. Liu, K. T. Valsaraj, and R. D. Delaune, “Inhibition of mercury methylation by iron sulfides in an anoxic sediment,” Environmental Engineering Science, vol. 26, no. 4, pp. 833–840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. J. M. Benoit, C. C. Gilmour, R. P. Mason, and A. Heyes, “Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters,” Environmental Science and Technology, vol. 33, no. 6, pp. 951–957, 1999. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Drott, L. Lambertsson, E. Bjorn, and U. Skyllberg, “Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments,” Environmental Science and Technology, vol. 41, no. 7, pp. 2270–2276, 2007. View at Publisher · View at Google Scholar
  127. Z. Xiong, F. He, D. Zhao, and M. O. Barnett, “Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles,” Water Research, vol. 43, no. 20, pp. 5171–5179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. N. W. Revis, T. R. Osborne, G. Holdsworth, and C. Hadden, “Distribution of mercury species in soil from a mercury-contaminated site,” Water, Air, and Soil Pollution, vol. 45, no. 1-2, pp. 105–113, 1989. View at Scopus
  129. D. Renock, T. Gallegos, S. Utsunomiya, K. Hayes, R. C. Ewing, and U. Becker, “Chemical and structural characterization of As immobilization by nanoparticles of mackinawite (FeSm),” Chemical Geology, vol. 268, no. 1-2, pp. 116–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Wolthers, L. Charlet, C. H. van Der Weijden, P. R. van der Linde, and D. Rickard, “Arsenic mobility in the ambient sulfidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite,” Geochimica et Cosmochimica Acta, vol. 69, no. 14, pp. 3483–3492, 2005. View at Publisher · View at Google Scholar
  131. T. J. Gallegos, P. H. Sung, and K. F. Hayes, “Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite,” Environmental Science and Technology, vol. 41, no. 22, pp. 7781–7786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. T. J. Gallegos, Y. S. Han, and K. F. Hayes, “Model predictions of realgar precipitation by reaction of As(III) with synthetic mackinawite under anoxic conditions,” Environmental Science and Technology, vol. 42, no. 24, pp. 9338–9343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Liu, J. Terry, and S. Jurisson, “Pertechnetate immobilization with amorphous iron sulfide,” Radiochimica Acta, vol. 96, no. 12, pp. 823–833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. R. R. Patterson, S. Fendorf, and M. Fendorf, “Reduction of hexavalent chromium by amorphous iron sulfide,” Environmental Science and Technology, vol. 31, no. 7, pp. 2039–2044, 1997. View at Publisher · View at Google Scholar
  135. B. Hua and B. Deng, “Reductive immobilization of uranium(VI) by amorphous iron sulfide,” Environmental Science and Technology, vol. 42, no. 23, pp. 8703–8708, 2008. View at Publisher · View at Google Scholar
  136. E. C. Butler and K. F. Hayes, “Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide,” Environmental Science and Technology, vol. 32, no. 9, pp. 1276–1284, 1998. View at Publisher · View at Google Scholar · View at Scopus
  137. E. C. Butler and K. F. Hayes, “Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide,” Environmental Science and Technology, vol. 33, no. 12, pp. 2021–2027, 1999. View at Publisher · View at Google Scholar
  138. E. C. Butler and K. F. Hayes, “Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal,” Environmental Science and Technology, vol. 35, no. 19, pp. 3884–3891, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. X. Shi, K. Sun, L. P. Balogh, and J. R. Baker Jr., “Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles,” Nanotechnology, vol. 17, pp. 4554–4560, 2006.
  140. C. Blodau, “A review of acidity generation and consumption in acidic coal mine lakes and their watersheds,” Science of the Total Environment, vol. 369, no. 1–3, pp. 307–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. H. Niu and Y. Cai, “Adsorption and concentration of organic contaminants by carbon nanotubes from environmental samples,” in Advances in Nanotechnology and the Environment, J. Kim, Ed., pp. 79–136, Pan Stanford Publishing, Singapore, Singapore, 2012.
  142. G. P. Rao, C. Lu, and F. Su, “Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review,” Separation and Purification Technology, vol. 58, no. 1, pp. 224–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. Y. H. Li, J. Ding, Z. Luan et al., “Competitive adsorption of Pb2+, Cu2+ and Cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, vol. 41, no. 14, pp. 2787–2792, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. C. Lu and C. Liu, “Removal of nickel(II) from aqueous solution by carbon nanotubes,” Journal of Chemical Technology and Biotechnology, vol. 81, no. 12, pp. 1932–1940, 2006. View at Publisher · View at Google Scholar
  145. H. Hyung, J. D. Fortner, J. B. Hughes, and J.-H. Kim, “Natural organic matter stabilizes carbon nanotubes in the aqueous phase,” Environmental Science and Technology, vol. 41, no. 1, pp. 179–184, 2007. View at Publisher · View at Google Scholar
  146. D. P. Jaisi and M. Elimelech, “Single-walled carbon nanotubes exhibit limited transport in soil columns,” Environmental Science and Technology, vol. 43, no. 24, pp. 9161–9166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. D. P. Jaisi, N. B. Saleh, R. E. Blake, and M. Elimelech, “Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility,” Environmental Science and Technology, vol. 42, no. 22, pp. 8317–8323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. L. Jiang, L. Gao, and J. Sun, “Production of aqueous colloidal dispersions of carbon nanotubes,” Journal of Colloid and Interface Science, vol. 260, no. 1, pp. 89–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. M. J. O'Connell, P. Boul, L. M. Ericson et al., “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping,” Chemical Physics Letters, vol. 342, no. 3-4, pp. 265–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. X. Zhou, L. Shu, H. Zhao et al., “Suspending multi-walled carbon nanotubes by humic acids from a peat soil,” Environmental Science and Technology, vol. 46, no. 7, pp. 3891–3897, 2012. View at Publisher · View at Google Scholar
  151. L. Xueying, D. M. O'Carroll, E. J. Petersen, H. Qingguo, and C. L. Anderson, “Mobility of multiwalled carbon nanotubes in porous media,” Environmental Science and Technology, vol. 43, no. 21, pp. 8153–8158, 2009. View at Publisher · View at Google Scholar
  152. D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats,” Toxicological Sciences, vol. 77, no. 1, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. C. W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation,” Toxicological Sciences, vol. 77, no. 1, pp. 126–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. G. Jia, H. Wang, L. Yan et al., “Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene,” Environmental Science and Technology, vol. 39, no. 5, pp. 1378–1383, 2005. View at Publisher · View at Google Scholar
  155. A. Magrez, S. Kasas, V. Salicio et al., “Cellular toxicity of carbon-based nanomaterials,” Nano Letters, vol. 6, no. 6, pp. 1121–1125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. X. Chen, U. C. Tam, J. L. Czlapinski et al., “Interfacing carbon nanotubes with living cells,” Journal of the American Chemical Society, vol. 128, no. 19, pp. 6292–6293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. X. Q. Li, D. G. Brown, and W. X. Zhang, “Stabilization of biosolids with nanoscale zero-valent iron (nZVI),” Journal of Nanoparticle Research, vol. 9, no. 2, pp. 233–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. N. G. Turan, “The effects of natural zeolite on salinity level of poultry litter compost,” Bioresource Technology, vol. 99, no. 7, pp. 2097–2101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. A. A. Zorpas, T. Constantinides, A. G. Vlyssides, I. Haralambous, and M. Loizidou, “Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost,” Bioresource Technology, vol. 72, no. 2, pp. 113–119, 2000. View at Publisher · View at Google Scholar · View at Scopus
  160. L. R. Nissen, N. W. Lepp, and R. Edwards, “Synthetic zeolites as amendments for sewage sludge-based compost,” Chemosphere, vol. 41, no. 1-2, pp. 265–269, 2000. View at Publisher · View at Google Scholar · View at Scopus
  161. J. Villaseñor, L. Rodriguez, and F.J. Fernandez, “Composting domestic sewage sludge with natural zeolites in a rotary drum reactor,” Bioresource Technology, vol. 102, no. 2, pp. 1447–1454, 2011. View at Publisher · View at Google Scholar
  162. A. A. Zorpas and M. Loizidou, “Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge,” Bioresource Technology, vol. 99, no. 16, pp. 7545–7552, 2008. View at Publisher · View at Google Scholar
  163. A. A. Zorpas, I. Vassilis, M. Loizidou, and H. Grigoropoulou, “Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite,” Journal of Colloid and Interface Science, vol. 250, no. 1, pp. 1–4, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. A. A. Zorpas, A. G. Vlyssides, and M. Loizidou, “Dewatered anaerobically-stabilized primary sewage sludge composting: metal leachability and uptake by natural clinoptilolite,” Communications in Soil Science and Plant Analysis, vol. 30, no. 11-12, pp. 1603–1613, 1999. View at Scopus
  165. V. P. Gadepalle, S. K. Ouki, R. Van Herwijnen, and T. Hutchings, “Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites,” Soil and Sediment Contamination, vol. 16, no. 2, pp. 233–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. H. Andry, T. Yamamoto, and M. Inoue, “Influence of artificial zeolite and hydrated lime amendments on the erodibility of an acidic soil,” Communications in Soil Science and Plant Analysis, vol. 40, no. 7-8, pp. 1053–1072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. T. Yamamoto, A. Yuya, A. Satoh, et al., “Application of artificial zeolite to combat soil erosion,” in Proceedings of the American Society of Agricultural Engineers, Canadian Society for Engineering of Agricultural, Food and Biological System Annual International Meeting, Government Centre Ottawa, Ontario, Canada, August 2004.
  168. M. Zheng, A technology for enhanced control of erosion, sediment and metal leaching at disturbed land using polyacrylamide and magnetite nanoparticles [M.S. thesis], Auburn University, Auburn, Ala, USA, 2011.
  169. Z. S. Wang, M. T. Hung, and J. C. Liu, “Sludge conditioning by using alumina nanoparticles and polyelectrolyte,” Water Science and Technology, vol. 56, no. 8, pp. 125–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. C. Ovenden and H. Xiao, “Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems,” Colloids and Surfaces A, vol. 197, no. 1–3, pp. 225–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  171. Z. Yan and Y. Deng, “Cationic microparticle based flocculation and retention systems,” Chemical Engineering Journal, vol. 80, no. 1–3, pp. 31–36, 2000. View at Publisher · View at Google Scholar · View at Scopus
  172. T. H. Eyde, “Zeolites,” Minerals Engineering, vol. 62, p. 86, 2010.
  173. X. Q. Li, D. W. Elliott, and W. X. Zhang, “Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects,” Critical Reviews in Solid State and Materials Sciences, vol. 31, no. 4, pp. 111–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  174. Carbon nanotube, http://en.wikipedia.org/wiki/Carbon_nanotube, 2012.