About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 516309, 9 pages
http://dx.doi.org/10.1155/2012/516309
Research Article

A Protein-Based Ferritin Bio-Nanobattery

1Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
2Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, Virginia 23666, USA
3Industrial Bioscience Department, Genencor, Shanghai, China
4Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
5Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
6National Institute of Aerospace, Hampton, VA 23666, USA

Received 26 January 2012; Accepted 20 March 2012

Academic Editor: A. M. Rao

Copyright © 2012 Gerald D. Watt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, and J. M. Tour, “Directional control in thermally driven single-molecule nanocars,” Nano Letters, vol. 5, no. 11, pp. 2330–2334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. H. G. Craighead, “Nanoelectromechanical systems,” Science, vol. 290, no. 5496, pp. 1532–1535, 2000. View at Scopus
  3. R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, and C. D. Montemagno, “Powering an inorganic nanodevice with a biomolecular motor,” Science, vol. 290, no. 5496, pp. 1555–1558, 2000. View at Scopus
  4. Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, and J. M. Tour, “Directional control in thermally driven single-molecule nanocars,” Nano Letters, vol. 5, no. 11, pp. 2330–2334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Davis, D. A. Morgan, C. L. Wrathmell, D. N. Axford, J. Zhao, and N. Wang, “Molecular bioelectronics,” Journal of Materials Chemistry, vol. 15, no. 22, pp. 2160–2174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Sinha and J. T. W. Yeow, “Carbon nanotubes for biomedical applications,” IEEE Transactions on Nanobioscience, vol. 4, no. 2, pp. 180–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S.-H. Chu, J. N. Harb, and S. H. Choi, “Conceptual aspects of nanopower systems,” in Proceedings of the 1st World Congress of Biomimetics & Artificial Muscles, Albuquerque, NM, USA, December 2002.
  8. P. M. Harrison and P. Arosio, “The ferritins: molecular properties, iron storage function and cellular regulation,” Biochimica et Biophysica Acta, vol. 1275, no. 3, pp. 161–203, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. P. M. Proulx-Curry and N. D. Chasteen, “Molecular aspects of iron uptake and storage in ferritin,” Coordination Chemistry Reviews, vol. 144, pp. 347–368, 1995. View at Scopus
  10. F. Bou-Abdallah, “Iron redox and hydrolysis chemistry of the ferritins,” Biochimica et Biophysica Acta, vol. 1800, p. 691, 2010.
  11. B. Webb, J. Frame, Z. Zhao, M. L. Lee, and G. D. Watt, “Molecular entrapment of small molecules within the interior of horse spleen ferritin,” Archives of Biochemistry and Biophysics, vol. 309, no. 1, pp. 178–183, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Yang and N. D. Chasteen, “Molecular diffusion into horse spleen ferritin: a nitroxide radical spin probe study,” Biophysical Journal, vol. 71, no. 3, pp. 1587–1595, 1996. View at Scopus
  13. D. C. Zapien and M. A. Johnson, “Direct electron transfer of ferritin adsorbed at bare gold electrodes,” Journal of Electroanalytical Chemistry, vol. 494, no. 2, pp. 114–120, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-W. Kim, S. Choi, and P. T. Lillehei, “Electrochemically controlled reconstitution of immobilized ferritins for bioelectronics applications,” Journal of Electroanalytical Chemistry, vol. 601, no. 8, 2006.
  15. F. Marken, D. Patel, C. E. Madden, R. C. Millward, and S. Fletcher, “The direct electrochemistry of ferritin compared with the direct electrochemistry of nanoparticulate hydrous ferric oxide,” New Journal of Chemistry, vol. 26, no. 2, pp. 259–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Frew and H. A. O. Hill, “Direct and indirect electron transfer between electrodes and redox proteins,” European Journal of Biochemistry, vol. 172, pp. 261–269, 1988.
  17. B. Zhang, J. N. Harb, R. C. Davis et al., “Electron exchange between Fe(II)-horse spleen ferritin and Co(III)Mn(III) reconstituted horse spleen and Azotobacter vinelandii ferritins,” Biochemistry, vol. 45, no. 18, pp. 5766–5774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Jacobs, G. D. Watt, R. B. Frankel, and G. C. Papaefthymiou, “Redox reactions associated with iron release from mammalian ferritin,” Biochemistry, vol. 28, no. 4, pp. 1650–1655, 1989. View at Scopus
  19. G. D. Watt, J. W. McDonald, C.-H. Chiu, and K. R. N. Reddy, “Further characterization of the redox and spectroscopicproperties of azotobactervinelandiiferritin,” Journal of Inorganic Biochemistry, vol. 51, pp. 745–758, 1993.
  20. G. D. Watt, R. B. Frankel, and G. C. Papaefthymiou, “Reduction of mammalian ferritin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 11, pp. 3640–3643, 1985. View at Scopus
  21. T. Douglas and V. T. Stark, “Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin,” Inorganic Chemistry, vol. 39, no. 8, pp. 1828–1830, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Zhang, J. N. Harb, R. C. Davis et al., “Kinetic and thermodynamic characterization of the cobalt and manganese oxyhydroxide cores formed in horse spleen ferritin,” Inorganic Chemistry, vol. 44, no. 10, pp. 3738–3745, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. D. Watt, D. Jacobs, and R. B. Frankel, “Redox reactivity of bacterial and mammalian ferritin: is reductant entry into the ferritin interior a necessary step for iron release?” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 20, pp. 7457–7461, 1988. View at Scopus
  24. G. D. Watt, R. B. Frankel, G. C. Papaefthmiou, K. Spartalian, and E. I. Stiefel, “Redox properties and mossbauer spectroscopy of azotobacter vinelandii bacterio ferritin,” Biochemistry, vol. 25, p. 4330, 1986.
  25. M. Okuda, K. Iwahori, I. Yamashita, and H. Yoshimura, “Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin,” Biotechnology and Bioengineering, vol. 84, no. 2, pp. 187–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. W. Kim, S. H. Choi, P. T. Lillehei, S. H. Chu, G. C. King, and G. D. Watt, “Cobalt oxide hollow nanoparticles derived by bio-templating,” Chemical Communications, no. 32, pp. 4101–4103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. K. K. W. Wong and S. Mann, “Biomemetic synthesis of cadmium sulfide-ferritin nanocomposite,” Advanced Materials, vol. 8, pp. 928–932, 1966.
  28. L. Zhang, J. Swift, C. A. Butts, V. Yerubandi, and I. J. Dmochowski, “Structure and activity of apoferritin-stabilized gold nanoparticles,” Journal of Inorganic Biochemistry, vol. 101, no. 11-12, pp. 1719–1729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. F. C. Meldrum, V. J. Wade, D. L. Nimmo, B. R. Heywood, and S. Mann, “Synthesis of inorganic nanophase materials in supramolecular protein cages,” Nature, vol. 349, no. 6311, pp. 684–687, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Johnson, D. C. Norcross, P. Arosio, R. B. Frankel, and G. D. Watt, “Redox reactivity of animal apoferritins and apoheteropolymers assembled from recombinant heavy and light human chain ferritins,” Biochemistry, vol. 38, no. 13, pp. 4089–4096, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Ikezoe, Y. Kumashiro, K. Tamada et al., “Growth of giant two-dimensional crystal of protein molecules from a three-phase contact line,” Langmuir, vol. 24, no. 22, pp. 12836–12841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Matsui, N. Matsukawa, K. Iwahori, K. I. Sano, K. Shiba, and I. Yamashita, “Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity peptides,” Langmuir, vol. 23, no. 4, pp. 1615–1618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Caruso, D. N. Furlong, and P. Kingshott, “Characterization of ferritin adsorption onto gold,” Journal of Colloid and Interface Science, vol. 186, no. 1, pp. 129–140, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Johnson, Y. Yuan, and A. M. Lenhoff, “Adsorbed layers of ferritin at solid and fluid interfaces studied by atomic force microscopy,” Journal of Colloid and Interface Science, vol. 223, no. 2, pp. 261–272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Casero, M. Darder, K. Takada, H. D. Abruña, F. Pariente, and E. Lorenzo, “Dithiobissuccinimidyl propionate as an anchor for assembling peroxidases at electrodes surfaces and its application in a H2O2 biosensor,” Langmuir, vol. 15, no. 1, pp. 127–134, 1999. View at Scopus
  36. M. Darder, K. Takada, F. Pariente, E. Lorenzo, and H. D. Abrũna, “Addition of sulfhydryl groups to Escherichia coli ribosomes by protein modification with 2-iminothiolane (Methyl 4-Mercaptobutyrimidate),” Analytical Chemistry, vol. 71, no. 24, pp. 5530–5537, 1999.
  37. D. Jacobs, G. D. Watt, R. B. Frankel, and G. C. Papaefthymiou, “Fe2+ binding to Apo and Holo mammalian ferritin,” Biochemistry, vol. 28, no. 23, pp. 9216–9221, 1989. View at Scopus
  38. G. D. Watt, R. B. Frankel, D. Jacobs, H. Huang, and G. C. Papaefthymiou, “Fe2+ and phosphate interactions in bacterial ferritin from azotobacter vinelandii,” Biochemistry, vol. 31, no. 24, pp. 5672–5679, 1992. View at Scopus
  39. D. Xu, G. D. Watt, J. N. Harb, and R. C. Davis, “Electrical conductivity of ferritin proteins by conductive AFM,” Nano Letters, vol. 5, no. 4, pp. 571–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. G. C. Ford, P. M. Harrison, D. W. Rice et al., “Ferritin: design and formation of an iron-storage molecule,” Philosophical transactions of the Royal Society of London Series B, vol. 304, no. 1121, pp. 551–565, 1984. View at Scopus
  41. Y. Ha, D. Shi, G. W. Small, E. C. Theil, and N. M. Allewell, “Crystal structure of bullfrog M ferritin at 2.8 Å resolution: analysis of subunit interactions and the binuclear metal center,” Journal of Biological Inorganic Chemistry, vol. 4, no. 3, pp. 243–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Zhang, R. K. Watt, N. Galvez, J. M. Dominguez-Vera, and G. D. Watt, “Rate of iron transfer through the horse spleen ferritin shell determined by the rate of formation of Prussian Blue and Fe-desferrioxamine within the ferritin cavity,” Biophysical Chemistry, vol. 120, pp. 96–105, 2006.
  43. X. Liu, W. Jin, and E. C. Theil, “Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3653–3658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Stanish, D. A. Lowy, C.-W. Hung, and A. Singh, “Vesicle-based rechargeable batteries,” Advanced Materials, vol. 17, pp. 1194–1198, 2005.