About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 620309, 7 pages
http://dx.doi.org/10.1155/2012/620309
Review Article

Functional Conducting Polymers in the Application of SPR Biosensors

1Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2Center for Transdisciplinary Research, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
3Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Received 20 February 2012; Accepted 21 May 2012

Academic Editor: Carlos R. Cabrera

Copyright © 2012 Rapiphun Janmanee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. K. Guimard, N. Gomez, and C. E. Schmidt, “Conducting polymers in biomedical engineering,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 876–921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Baba, S. Tian, F. Stefani et al., “Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance,” Journal of Electroanalytical Chemistry, vol. 562, no. 1, pp. 95–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Vidal, E. Garcia-Ruiz, and J. R. Castillo, “Recent advances in electropolymerized conducting polymers in amperometric biosensors,” Microchimica Acta, vol. 143, no. 2-3, pp. 93–111, 2003. View at Scopus
  4. F. S. Damos, R. C. S. Luz, and L. T. Kubota, “Investigations of ultrathin polypyrrole films: formation and effects of doping/dedoping processes on its optical properties by electrochemical surface plasmon resonance (ESPR),” Electrochimica Acta, vol. 51, no. 7, pp. 1304–1312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Adhikari and S. Majumdar, “Polymers in sensor applications,” Progress in Polymer Science, vol. 29, no. 7, pp. 699–766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Wang and W. Knoll, “In situ electrochemical and surface plasmon resonance (SPR) studies of aniline-carboxylated aniline copolymers,” Analytica Chimica Acta, vol. 558, no. 1-2, pp. 150–157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Toyama, K. Aoki, and S. Kato, “SPR observation of adsorption and desorption of water-soluble polymers on an Au surface,” Sensors and Actuators, B, vol. 108, no. 1-2, pp. 903–909, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Şenel and C. Nergiz, “Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrole propylic acid)/Au nanocomposite,” Current Applied Physics, vol. 12, no. 4, pp. 1118–1124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Zhou and J. Heinze, “Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole,” Electrochimica Acta, vol. 44, no. 11, pp. 1733–1748, 1999. View at Scopus
  10. K. Shinbo, A. Baba, F. Kaneko et al., “In situ investigations on the preparations of layer-by-layer films containing azobenzene and applications for LC display devices,” Materials Science and Engineering C, vol. 22, no. 2, pp. 319–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Singh, P. K. Kathuroju, and N. Jampana, “Polypyrrole based amperometric glucose biosensors,” Sensors and Actuators, B, vol. 143, no. 1, pp. 430–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Dong, X. Cao, C. M. Li, and W. Hu, “An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: comparison between SPR and electrochemical responses from polymer formation to protein immunosensing,” Biosensors and Bioelectronics, vol. 23, no. 7, pp. 1055–1062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Gooding, C. Wasiowych, D. Barnett, D. B. Hibbert, J. N. Barisci, and G. G. Wallace, “Electrochemical modulation of antigen-antibody binding,” Biosensors and Bioelectronics, vol. 20, no. 2, pp. 260–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. W. Lee, F. Serna, J. Nickels, and C. E. Schmidt, “Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion,” Biomacromolecules, vol. 7, no. 6, pp. 1692–1695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Schweiss, J. F. Lübben, D. Johannsmann, and W. Knoll, “Electropolymerization of ethylene dioxythiophene (EDOT) in micellar aqueous solutions studied by electrochemical quartz crystal microbalance and surface plasmon resonance,” Electrochimica Acta, vol. 50, no. 14, pp. 2849–2856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. D. Webster, “In situ electrochemical-ATR-FTIR spectroscopic studies on solution phase 2,4,6-tri-substituted phenoxyl radicals,” Electrochemistry Communications, vol. 5, no. 1, pp. 6–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. D. Webster, R. A. W. Dryfe, J. C. Eklund, C. W. Lee, and R. G. Compton, “In situ electrochemical ESR studies of reactive radicals: the reductions of bromo-anthraquinone and methyl viologen,” Journal of Electroanalytical Chemistry, vol. 402, no. 1-2, pp. 167–174, 1996. View at Scopus
  18. R. Kurita, K. Nakamoto, A. Ueda, and O. Niwa, “Comparison of electrochemical and surface plasmon resonance immunosensor responses on single thin film,” Electroanalysis, vol. 20, no. 20, pp. 2241–2246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Kurita, Y. Yokota, A. Ueda, and O. Niwa, “Electrochemical surface plasmon resonance measurement in a microliter volume flow cell for evaluating the affinity and catalytic activity of biomolecules,” Analytical Chemistry, vol. 79, no. 24, pp. 9572–9576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual Review of Physical Chemistry, vol. 49, no. 1, pp. 569–638, 1998. View at Scopus
  21. A. Baba and W. Knoll, “Properties of poly(3,4-ethylenedioxythiophene) ultrathin films detected by in situ electrochemical-surface plasmon field-enhanced photoluminescence spectroscopy,” The Journal of Physical Chemistry B, vol. 107, no. 31, pp. 7733–7738, 2003. View at Scopus
  22. K. Kato, K. Yamashita, Y. Ohdaira, A. Baba, K. Shinbo, and F. Kaneko, “Electrochemical surface plasmon excitation and emission light properties in poly(3-hexylthiophene) thin films,” Thin Solid Films, vol. 518, no. 2, pp. 758–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Tian, A. Baba, J. Liu et al., “Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of β-nicotinamide adenine dinucleotide,” Advanced Functional Materials, vol. 13, no. 6, pp. 473–479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. C. Yu and E. P. C. Lai, “Polypyrrole film on miniaturized surface plasmon resonance sensor for ochratoxin A detection,” Synthetic Metals, vol. 143, no. 3, pp. 253–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Shao, Y. Jin, J. Wang, L. Wang, F. Zhao, and S. Dong, “Conducting polymer polypyrrole supported bilayer lipid membranes,” Biosensors and Bioelectronics, vol. 20, no. 7, pp. 1373–1379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Hu, C. M. Li, and H. Dong, “Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors,” Analytica Chimica Acta, vol. 630, no. 1, pp. 67–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Wang, F. Wang, H. Chen, X. Liu, and S. Dong, “Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid membranes,” Talanta, vol. 75, no. 3, pp. 666–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Kang, G. Cheng, and S. Dong, “A novel electrochemical SPR biosensor,” Electrochemistry Communications, vol. 3, no. 9, pp. 489–493, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. K. V. Gobi, H. Iwasaka, and N. Miura, “Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1382–1389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Sriwichai, A. Baba, S. Phanichphant, K. Shinbo, K. Kato, and F. Kaneko, “Electrochemically controlled surface plasmon resonance immunosensor for the detection of human immunoglobulin G on poly(3-aminobenzoic acid) ultrathin films,” Sensors and Actuators, B, vol. 147, no. 1, pp. 322–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Peng, L. Zhang, C. Soeller, and J. Travas-Sejdic, “Conducting polymers for electrochemical DNA sensing,” Biomaterials, vol. 30, no. 11, pp. 2132–2148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. K. S. V. Santhanam, “Conducting polymers for biosensors: rationale based on models,” Pure and Applied Chemistry, vol. 70, no. 6, pp. 1259–1262, 1998. View at Scopus
  33. M. Yuqing, C. Jianrong, and W. Xiaohua, “Construction of a glucose biosensor by immobilizing glucose oxidase within a poly(o-phenylenediamine) covered screen-printed electrode,” Journal of Biological Sciences, vol. 6, no. 1, pp. 18–22, 2006.
  34. D. D. Ateh, H. A. Navsaria, and P. Vadgama, “Polypyrrole-based conducting polymers and interactions with biological tissues,” Journal of the Royal Society Interface, vol. 3, no. 11, pp. 741–752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. 2010, http://www.immunosensors.com/.
  36. 2010, http://www.mdpi.com/journal/sensors/special_issues/immunosensors.
  37. A. Ramanavicius, A. Finkelsteinas, H. Cesiulis, and A. Ramanaviciene, “Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor,” Bioelectrochemistry, vol. 79, no. 1, pp. 11–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Wang, F. Wang, Z. Xu, Y. Wang, and S. Dong, “Surface plasmon resonance and electrochemistry characterization of layer-by-layer self-assembled DNA and Zr4+ thin films, and their interaction with cytochrome c,” Talanta, vol. 74, no. 1, pp. 104–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Janmanee, A. Baba, S. Phanichphant et al., “Detection of human IgG on Poly(pyrrole-3-carboxylic acid) thin film by electrochemical-Surface plasmon resonance spectroscopy,” Japanese Journal of Applied Physics, vol. 50, no. 1, Article ID 01BK02, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus