About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 635705, 6 pages
http://dx.doi.org/10.1155/2012/635705
Research Article

A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping

1Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
2MATIS, CNR, IMM, via S. Sofia 64, 95123 Catania, Italy
3Istituto per la Microelettronica e Microsistemi (CNR)-(IMM)—Consiglio Nazionale delle Ricerche VIII Strada 5, 95121 Catania, Italy
4Dipartimento di Fisica “A.Volta,” Università degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy

Received 28 September 2011; Accepted 23 November 2011

Academic Editor: Arturo I. Martinez

Copyright © 2012 F. Ruffino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, “High-quality manganese-doped ZnSe nanocrystals,” Nano Letters, vol. 1, no. 1, pp. 3–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Shim, C. Wang, D. J. Norris, and P. Guyot-Sionnest, “Doping and charging in colloidal semiconductor nanocrystals,” MRS Bulletin, vol. 26, no. 12, pp. 1005–1008, 2001. View at Scopus
  3. S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. De Mello Donegá, and A. Meijerink, “Probing the wave function of shallow Li and Na donors in ZnO nanoparticles,” Physical Review Letters, vol. 92, no. 4, pp. 476031–476034, 2004. View at Scopus
  4. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature, vol. 436, no. 7047, pp. 91–94, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. G. M. Dalpian and J. R. Chelikowsky, “Self-purification in semiconductor nanocrystals,” Physical Review Letters, vol. 96, no. 22, Article ID 226802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Fujii, S. Hayashi, and K. Yamamoto, “Photoluminescence from B-doped Si nanocrystals,” Journal of Applied Physics, vol. 83, no. 12, pp. 7953–7957, 1998. View at Scopus
  7. A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, “Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals,” Physical Review B, vol. 62, no. 19, pp. 12625–12627, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Physical Review Letters, vol. 89, no. 20, pp. 2068051–2068054, 2002. View at Scopus
  9. M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” Journal of Applied Physics, vol. 94, no. 3, pp. 1990–1995, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Stegner, R. N. Pereira, K. Klein, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Phosphorus doping of Si nanocrystals: interface defects and charge compensation,” Physica B, vol. 401-402, pp. 541–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Lechner, A. R. Stegner, R. N. Pereira et al., “Electronic properties of doped silicon nanocrystal films,” Journal of Applied Physics, vol. 104, no. 5, Article ID 053701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Stegner, R. N. Pereira, K. Klein et al., “Electronic transport in phosphorus-doped silicon nanocrystal networks,” Physical Review Letters, vol. 100, no. 2, Article ID 026803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Perego, C. Bonafos, and M. Fanciulli, “Phosphorus doping of ultra-small silicon nanocrystals,” Nanotechnology, vol. 21, no. 2, Article ID 025602, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” Journal of Physical Chemistry B, vol. 104, no. 22, pp. 5215–5216, 2000. View at Scopus
  15. D. D. D. Ma, C. S. Lee, and S. T. Lee, “Scanning tunneling microscopic study of boron-doped silicon nanowires,” Applied Physics Letters, vol. 79, no. 15, pp. 2468–2470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Byon, D. Tham, J. E. Fischer, and A. T. Johnson, “Synthesis and postgrowth doping of silicon nanowires,” Applied Physics Letters, vol. 87, no. 19, Article ID 193104, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Colli, A. Fasoli, C. Ronning, S. Pisana, S. Piscanec, and A. C. Ferrari, “Ion beam doping of silicon nanowires,” Nano Letters, vol. 8, no. 8, pp. 2188–2193, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. S. Ossicini, E. Degoli, F. Iori et al., “Simultaneously B- and P-doped silicon nanoclusters: formation energies and electronic properties,” Applied Physics Letters, vol. 87, no. 17, Article ID 173120, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Iori, E. Degoli, E. Luppi et al., “Doping in silicon nanocrystals: an ab initio study of the structural, electronic and optical properties,” Journal of Luminescence, vol. 121, no. 2, pp. 335–339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Singh, V. Kumar, R. Note, and Y. Kawazoe, “Effects of morphology and doping on the electronic and structural properties of hydrogenated silicon nanowires,” Nano Letters, vol. 6, no. 5, pp. 920–925, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. Peelaers, B. Partoens, and F. M. Peeters, “Formation and segregation energies of B and P doped and BP codoped silicon nanowires,” Nano Letters, vol. 6, no. 12, pp. 2781–2784, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. Ossicini, E. Degoli, F. Iori et al., “Doping in silicon nanocrystals,” Surface Science, vol. 601, no. 13, pp. 2724–2729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Chen, X. Pi, and D. Yang, “Critical role of dopant location for P-doped Si nanocrystals,” Journal of Physical Chemistry C, vol. 115, no. 3, pp. 661–666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York, NY, USA, 1985.
  25. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiO,” Journal of Applied Physics, vol. 95, no. 7, pp. 3723–3732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Franzò, M. Miritello, S. Boninelli et al., “Microstructural evolution of SiOx films and its effect on the luminescence of Si nanoclusters,” Journal of Applied Physics, vol. 104, no. 9, Article ID 094306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. L. R. Doolittle and M. O. Thompson, RUMP, Computer Graphics Service, 2002, http://www.genplot.com.
  28. G. E. Jellison, S. P. Withrow, J. W. McCamy, J. D. Budai, D. Lubben, and M. J. Godbole, “Optical functions of ion-implanted, laser-annealed heavily doped silicon,” Physical Review B, vol. 52, no. 20, pp. 14607–14614, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, and S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Physical Review B, vol. 72, no. 12, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Mansour, A. E. Naciri, L. Johann, J. J. Grob, and M. Stchakovsky, “Dielectric function and optical transitions of silicon nanocrystals between 0.6 eV and 6.5 eV,” Physica Status Solidi A, vol. 205, no. 4, pp. 845–848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Privitera, W. Vandervorst, and T. Clarysse, “Spreading resistance-based technique for two-dimensional carrier profiling,” Journal of the Electrochemical Society, vol. 140, no. 1, pp. 262–270, 1993. View at Scopus
  32. B. J. Masters and J. M. Fairfield, “Arsenic isoconcentration diffusion studies in silicon,” Journal of Applied Physics, vol. 40, no. 6, pp. 2390–2394, 1969. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Wada and D. A. Antoniadis, “Anomalous arsenic diffusion in silicon dioxide,” Journal of the Electrochemical Society, vol. 128, no. 6, pp. 1317–1320, 1981. View at Scopus
  34. A. Höfler, T. Feudel, N. Strecker et al., “A technology oriented model for transient diffusion and activation of boron in silicon,” Journal of Applied Physics, vol. 78, no. 6, pp. 3671–3679, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Uematsu, “Transient enhanced diffusion and deactivation of high-dose implanted arsenic in silicon,” Japanese Journal of Applied Physics Part 1, vol. 39, no. 3 A, pp. 1006–1012, 2000. View at Scopus
  36. M. Barozzi, D. Giubertoni, M. Anderle, and M. Bersani, “Arsenic shallow depth profiling: accurate quantification in SiO,” Applied Surface Science, vol. 231-232, pp. 632–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Pinacho, M. Jaraiz, P. Castrillo, I. Martin-Bragado, J. E. Rubio, and J. Barbolla, “Modeling arsenic deactivation through arsenic-vacancy clusters using an atomistic kinetic Monte Carlo approach,” Applied Physics Letters, vol. 86, no. 25, pp. 1–3, 2005. View at Publisher · View at Google Scholar
  38. M. Ferri, S. Solmi, A. Parisini, M. Bersani, D. Giubertoni, and M. Barozzi, “Arsenic uphill diffusion during shallow junction formation,” Journal of Applied Physics, vol. 99, no. 11, Article ID 113508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. L. W. Wang and A. Zunger, “Dielectric constants of silicon quantum dots,” Physical Review Letters, vol. 73, no. 7, pp. 1039–1042, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Tsu, D. Babić, and L. Loriatti, “Simple model for the dielectric constant of nanoscale silicon particle,” Journal of Applied Physics, vol. 82, no. 3, pp. 1327–1329, 1997. View at Scopus