About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 840245, 7 pages
http://dx.doi.org/10.1155/2012/840245
Research Article

Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication

1Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Received 5 November 2011; Accepted 18 January 2012

Academic Editor: Mustafa Çulha

Copyright © 2012 Kristen D. Alexander et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kneipp, Y. Wang, H. Kneipp et al., “Single molecule detection using surface-enhanced raman scattering (SERS),” Physical Review Letters, vol. 78, no. 9, pp. 1667–1670, 1997. View at Scopus
  2. J. Lu, D. Chamberlin, D. A. Rider, M. Liu, I. Manners, and T. P. Russell, “Using a ferrocenylsilane-based block copolymer as a template to produce nanotextured Ag surfaces: uniformly enhanced surface enhanced Raman scattering active substrates,” Nanotechnology, vol. 17, no. 23, pp. 5792–5797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Letters, vol. 9, no. 11, pp. 3922–3929, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Dieringer, K. L. Wustholz, D. J. Masiello et al., “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” Journal of the American Chemical Society, vol. 131, no. 2, pp. 849–854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. E. C. le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13794–13803, 2007. View at Publisher · View at Google Scholar
  6. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Physical Review Letters, vol. 83, no. 21, pp. 4357–4360, 1999. View at Scopus
  7. E. C. le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” Journal of Raman Spectroscopy, vol. 39, no. 9, pp. 1127–1134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. Camden, J. A. Dieringer, Y. Wang et al., “Probing the structure of single-molecule surface-enhanced raman scattering hot spots,” Journal of the American Chemical Society, vol. 130, no. 38, pp. 12616–12617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. B. Wang, B. S. Luk'yanchuk, W. Guo et al., “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” The Journal of Chemical Physics, vol. 128, no. 9, Article ID 094705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. L. Wustholz, A. I. Henry, J. M. McMahon et al., “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced raman spectroscopy,” Journal of the American Chemical Society, vol. 132, no. 31, pp. 10903–10910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Letters, vol. 4, no. 6, pp. 1093–1098, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Mie, “Beitrage zur Optik truber Medien,” Annals of Physics, vol. 25, pp. 377–445, 1908.
  13. S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” Journal of Raman Spectroscopy, vol. 38, no. 11, pp. 1436–1443, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Xu, “Calculation of the near field of aggregates of arbitrary spheres,” Journal of the Optical Society of America A, vol. 21, no. 5, pp. 804–809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. X. Xu, “A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres,” Physics Letters A, vol. 312, no. 5-6, pp. 411–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2006.
  17. J. Hu, B. Zhao, W. Xu, Y. Fan, B. Li, and Y. Ozaki, “Simple method for preparing controllably aggregated silver particle films used as surface-enhanced Raman scattering active substrates,” Langmuir, vol. 18, no. 18, pp. 6839–6844, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” Journal of Raman Spectroscopy, vol. 40, no. 12, pp. 2171–2175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. T. Krug, G. D. Wang, S. R. Emory, and S. Nie, “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals,” Journal of the American Chemical Society, vol. 121, no. 39, pp. 9208–9214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Letters, vol. 10, no. 5, pp. 1787–1792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, “On the chemical mechanism of surface enhanced Raman scattering: experiment and theory,” The Journal of Chemical Physics, vol. 108, no. 12, pp. 5013–5027, 1998. View at Scopus
  22. S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Letters, vol. 10, no. 5, pp. 1722–1727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Optics Communications, vol. 220, no. 1–3, pp. 137–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” The Journal of Physical Chemistry A, vol. 113, no. 10, pp. 1946–1953, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Applied Physics Letters, vol. 78, no. 6, pp. 802–804, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Bosnick, M. Maillard, L. Brus, and J. Jiang, “Single molecule Raman spectroscopy at the junctions of large ag nanocrystals,” The Journal of Physical Chemistry B, vol. 107, no. 37, pp. 9964–9972, 2003. View at Scopus
  27. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters, vol. 3, no. 8, pp. 1087–1090, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science, vol. 302, no. 5644, pp. 419–422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Letters, vol. 4, no. 11, pp. 2209–2213, 2004. View at Publisher · View at Google Scholar · View at Scopus