About this Journal Submit a Manuscript Table of Contents
Journal of Nanotechnology
Volume 2012 (2012), Article ID 943406, 7 pages
http://dx.doi.org/10.1155/2012/943406
Research Article

Novel Design for Quantum Dots Cellular Automata to Obtain Fault-Tolerant Majority Gate

1Department of Computer Engineering, Science and Research Branch of Islamic Azad University, Tehran, Iran
2Nanotechnology and Quantum Computing Lab., Shahid Beheshti University, G. C., Tehran, Iran
3Faculty of Electrical and Computer Engineering, Shahid Beheshti University, G. C., Tehran, Iran

Received 29 November 2011; Revised 4 January 2012; Accepted 10 January 2012

Academic Editor: Arturo I. Martinez

Copyright © 2012 Razieh Farazkish et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Quantum-dot Cellular Automata (QCA) is one of the most attractive technologies for computing at nanoscale. The principle element in QCA is majority gate. In this paper, fault-tolerance properties of the majority gate is analyzed. This component is suitable for designing fault-tolerant QCA circuits. We analyze fault-tolerance properties of three-input majority gate in terms of misalignment, missing, and dislocation cells. In order to verify the functionality of the proposed component some physical proofs using kink energy (the difference in electrostatic energy between the two polarization states) and computer simulations using QCA Designer tool are provided. Our results clearly demonstrate that the redundant version of the majority gate is more robust than the standard style for this gate.